Original article

Task-Specific Dystonia in Professional Musicians

A Systematic Review of the Importance of Intensive Playing as a Risk Factor

Dtsch Arztebl Int 2015; 112(51-52): 871-7; DOI: 10.3238/arztebl.2015.0871

Rozanski, V E; Rehfuess, E; Bötzel, K; Nowak, D

Background: Focal dystonia in professional musicians is a movement disorder that manifests itself during playing. It is a multifactorial condition in which a genetic predisposition and exogenous factors both play a role. Evidence suggests that intensive playing is a risk factor for the development of task-specific dystonia in professional musicians.

Methods: This review is based on pertinent publications (1950–2013) retrieved by a systematic search in medical and musicological databases. The references of the retrieved publications were also considered in the search.

Results: 16 articles with clinical information on a total of 1144 affected musicians were reviewed systematically. Their overall quality was intermediate to poor, and a meta-analysis was therefore not possible. The Bradford Hill criteria were applied to study a possible causative link between intensive playing and musician’s dystonia. Musician’s dystonia generally arises after at least ten years of intensive playing (corresponding to roughly 10 000 hours of practice). An association was found between the affected limb and the type of instrument: the limb that is subject to the greatest fine motor demands is the one most commonly affected. The average age of onset is 28 to 44 years.

Conclusion: The Bradford Hill causality criteria indicate that intensive playing is related to the development of musician’s dystonia. In particular, the association of the type of instrument with the site of dystonia supports this thesis. The findings imply that task-specific dystonia in professional musicians should be included in the list of occupational diseases in Germany.

Dystonia in professional musicians is a task-specific focal movement disorder that is accompanied by a loss in fine motor control while playing a musical instrument (1, 2). Cramping, flexions, and hyperextensions of the affected limb have been observed (2). About 1% of all professional musicians are afflicted (2). For 25% of this group, the occurrence of the symptoms means the end of their professional careers (3).

Therapeutic methods include injecting botulinum toxin, anticholinergic medication, and modifying the instrumental technique in order to change sensorimotor processing (4). Recommended measures in order to prevent musician’s dystonia include proprioception training, regular breaks, and stress management (5).

Disorders that are related to musician’s dystonia are further task-specific focal movement disorders, the most common of which is writer’s cramp (6); other pathologies include golfer’s cramp (7), auctioneer’s cramp (8), or cramp while playing table tennis (9), but these are rarer.

Pathophysiologically, dystonia in musicians has a multifactorial genesis, whereby a genetic predisposition (10) interacts with exogenous factors (2). In other forms of focal movement disorders—for example blepharospasm, cervical dystonia, or orofacial dystonia—an increase in mechanical strain on the affected regions before manifestation of dystonia symptoms has been described (11). This observation has given rise to the hypothesis that intensive playing is a pathogenetically relevant risk factor for the development of dystonia in musicians, as has already been expressed in some studies (1, 12).

This systematic review aims to investigate the importance of intensive playing as a risk factor for the development of focal, task-specific dystonia in professional musicians. To this end,

  • we compared the prevalence between an exposed group of persons and the general population without exposure, and
  • we studied a possible association between instrument-specific demands on fine-motor precision and affected body parts.

Methods

Search strategy

Initially we established a review protocol, which can be accessed online (13). We conducted a systematic literature search in 23 medical and musicology databases (eTable 1). Furthermore, other data sources, such as Google and Google Scholar were searched for relevant publications for the time period from January 1950 to April 2013. Online publications were included, as were abstracts and presentations from conferences. We used the following search terms: [“musician” OR “performing artist” OR “pianist” OR “cellist” OR “drummer” OR “woodwind” OR “flutist” OR “violinist”] AND [“dystonia” OR “focal dystonia” OR “cramp” OR “embouchure” OR “musician`s dystonia” OR “occupational dystonia”]. In databases allowing users to only enter one search term, an abridged search strategy was employed. In German-language databases, the equivalent German terms were used. Additionally, we searched the bibliographies of the included research studies and review articles for suitable publications.

Overview of databases searched and the articles obtained through the search
eTable 1
Overview of databases searched and the articles obtained through the search

In line with the objective of this systematic review, we defined the following tasks:

  • To undertake a comparison of prevalence rates of focal (task-specific) dystonia between a group with exposure and the general population
  • To conduct an instrument-specific analysis of the anatomical manifestation of focal dystonia in affected musicians.

We assumed that the body part that carries the main burden of fine-motor strain and in which gross motor strength and fine-motor coordination interact will be most commonly affected by dystonia. If this hypothesis is true, different body parts within the different classes of instruments are likely to be affected.

The PICOS criteria (14) were defined as follows:

  • P (population): professional musicians
  • I (intervention): intensive playing
  • C (comparison group): the non-professional normal population who makes music
  • O (outcome): a) anatomical manifestation of focal, task-specific dystonia within predefined instrument groups; b) conclusions regarding the prevalence of dystonia in musicians
  • S (study design): systematic review of original articles that include clinically documented cases.

Inclusion criteria

Articles were regarded as suitable for inclusion—independently of the study design—if they contained clinical and epidemiological primary data on musicians with focal task-specific dystonia. The diagnosis would have had to be made by a neurologist, and the article had to include information on the affected body part, the instrument/s played, and the intensity of instrument practice.

After deduplication, one of the authors (VR) checked the title, abstract, and full-text article for their suitability, and non-relevant articles were excluded. We chose primarily German and English as the publication languages. For other languages, articles were checked by interpreters in order to find out whether they contained clinical information in affected musicians.

Exclusion criteria

Our exclusion criteria were: doubts in the confirmation of the diagnosis by an expert and lacking clinical information.

Data extraction and quality assessment

Information from the included studies was collated by using a pre-prepared data extraction form. The following data were collected:

  • Publication date (author, year of publication)
  • Study design
  • Setting (country, city, hospital)
  • Primary endpoint (number of affected patients)
  • Age of subjects at the time of illness onset
  • Sex
  • Affected body part
  • Exposure (instrument/s played, quantification of playing)
  • Factors accompanying the disorder or prior factors (especially psychological stresses, prior trauma, hereditary predisposition).

The instruments were grouped into six classes; the classes reflected the anatomical distribution of the strongest fine-motor strain/stress (1):

  • Keyboard instruments (piano, organ, accordion),
  • String instruments (violin, viola, cello),
  • Plucked string instruments (harp, banjo, guitar),
  • Woodwind instruments (flute, clarinet, saxophone, oboe),
  • Brass instruments (trumpet, trombone, horn)
  • Percussion.

Where necessary, a study’s authors were contacted for additional information.

The quality of the included studies was assessed by using the Liverpool modification of the Newcastle-Ottawa-Scale (15). This approach was chosen for its flexibility, because it makes it possible to evaluate different types of studies and to adapt the response categories to the research question of this systematic review. Furthermore, this assessment scale allowed us to assess the cohort under study, the exposure, a study’s primary result, and the studies’ results. Up to two points per category are allocated; in total, 16 points can be awarded (eTable 2).

Clinical epidemiological studies
eTable 2
Clinical epidemiological studies

Data extraction and quality assessment were carried out independently by two authors of the present study (VR and either ER, DN, or KB) (Figure 1).

Selection process and inclusion of suitable studies into the systematic review according to
the PRISMA criteria
Figure 1
Selection process and inclusion of suitable studies into the systematic review according to the PRISMA criteria

Data evaluation

The prevalence rates of manifest focal dystonia depending on the main instrument played—grouped by the respective class of instrument (keyboard instruments; plucked string, string, woodwind, brass, and percussion instruments)—were graphically combined for all included patients (Figure 2).

Distribution of
focal dystonia by
instrument group in
the 1144 musicians
included in this
review
Figure 2
Distribution of focal dystonia by instrument group in the 1144 musicians included in this review

Since some of the studies with smaller case numbers focused on very specific research questions and because this might lead to selection bias, a sensitivity analysis was undertaken, and only those studies were considered that included more than 100 patients. In order to be able to categorize the relationship between intensive playing and dystonia symptoms as causal or merely associative, we used the Bradford Hill criteria for causation as the basis.

Results

In total, we identified 866 articles, of which 16 (1, 1630) met the inclusion criteria (Figure 1). All included studies were case series or clinical-experimental studies, with case numbers between three and 591 (eTable 3). Four studies were large case series (>100 affected musicians) that had been conducted at specialized centers for musicians’ medicine in Germany, France, Spain, and the US (1, 16, 28, 31). These four studies included data on 930 patients in total. Twelve studies were small and reported on 214 cases. According to the quality assessment, the studies were of poor to moderate quality (between 6 and 10 points out of 16) (eTable 3).

Overview of all included studies, data extraction, and quality assessment
eTable 3
Overview of all included studies, data extraction, and quality assessment

From the included articles we were able to identify a mean age at manifestation of 28–44 years. More men were affected than women (57–100%). The intensity of practicing was reported in different ways: as a daily practice time of four to six hours (22, 27, 28), as a cumulative total practice time of about 10 000 hours or more (20), or as a practice period of 10 or more years (26). Detailed information on the familial predisposition of musician’s dystonia was not available. Reports on the frequency of dystonia in the included articles were based either on literature citations or on primary data from a center for musicians’ medicine (Table 1), and these can therefore not be used as frequency data. Further inquiries yielded the insight that the prevalence data for Germany consist of the estimated number of affected musicians at specialist centers (ca 800) and the total number of professional musicians registered in orchestral associations (about 80 000). This equates to a cumulative prevalence of 1% (Altenmüller, personal communication) (1, 5).

Prevalence rates of dystonia in musicians as reported in included studies
Table 1
Prevalence rates of dystonia in musicians as reported in included studies

For the reported prevalences of idiopathic focal dystonia we used a large prevalence study (32) and a systematic review (33). These studies found rates of 117 per 1 000 000 (1 : 8500) (32) and 15 per 100 000 (1 : 6600). Estimated prevalences for limb dystonia in the group of non-professional musicians in the normal population are 1.24 per 100 000 (33).

Among musicians playing keyboard instruments (n = 327), the dystonia manifested preferentially in the right hand (dystonic symptoms in the right hand: 78%; left hand: 15%; both hands: 6%; torticollis: 1%). This was also the case for musicians playing plucked string instruments (n = 245; right hand: 78%; left hand: 19%; both hands: 3%) (Figure 2). The left hand was mainly afflicted in musicians playing string instruments (n = 155; right hand: 68%; right hand: 30%; both hands: 1%; torticollis: 1%). Orofacial dystonia—also called embouchure dystonia—was found exclusively in players of woodwind and brass instruments (woodwind: n = 199; 26%; brass: n = 181; 96%). Percussionists showed an almost equal distribution between both hands (left hand: 41%; right hand: 49%; both hands: 2%), but—in contrast to all other musicians—they also developed symptoms in their feet (8%).

These results were confirmed in a sensitivity analysis exclusively of the data of the four large studies (1, 16, 28, 30) (eFigure).

Distribution of
focal dystonia by
instrument group in
analogy to Figure 2,
after performing a
sensitivity analysis,
which includes 930
musicians from 4
large case series
eFigure
Distribution of focal dystonia by instrument group in analogy to Figure 2, after performing a sensitivity analysis, which includes 930 musicians from 4 large case series

Discussion

Focal, task-specific dystonia in professional musicians is a multifactorial disorder in which—according to the current hypothesis regarding pathophysiology—exogenous factors add to a genetic predisposition (1, 2). In this systematic review we investigated the importance of intensive playing as a trigger factor for the disorder. On the one hand, we found a notably increased prevalence of the disorder among the group that had been exposed compared with the non-exposed normal population; on the other hand, however, we also found instrument-specific manifestations of dystonia symptoms.

A comparison of the prevalences of focal idiopathic dystonia in the normal population with dystonia in musicians shows clear differences of 1:6600 to 1:100. With regard to focal, task-specific movement disorders, we even found prevalence differences of 1:80 000 to 1:100. Furthermore, it is of note that task-specific dystonia during instrument practice has been reported in the literature only for professional musicians, but not for the normal population—that is, lay musicians.

The disorder that is most closely related to musician’s dystonia is writer’s cramp, a similarly task-specific movement disorder. A case–control study identified as the risk factors long years of extensive writing as well as an abrupt increase in the duration and intensity of writing (6). An increase in the intensity of instrument practice before the manifestation of dystonia symptoms has also been observed in affected musicians (17), but this has not been the subject of systematic study. A case–control study was conducted for musician’s dystonia (34); this identified an older childhood age when taking up playing an instrument as a risk factor.

When analyzing the anatomical distribution of dystonia symptoms by specific type of instrument, it is of note that the body part that is subjected to the highest degree of fine motor stress/strain is also the body part that is proportionally most often affected. The dominance of the right hand in musicians playing keyboard instruments or plucked string instruments and the left hand in musicians playing string instruments that this study identified is consistent with the mechanical challenges within these classes of instruments (1, 12). Brass instrumentalists and musicians playing plucked string instruments were at a particularly high risk for developing dystonia (1); a fact that may reflect the enormous mechanical challenges posed by these types of instruments.

This systematic review underlines the importance of intensive playing as a trigger factor. The decision of whether two variables are linked by causation or by association can be based in the epidemiological setting on the Bradford Hill criteria (35). Table 2 provides a complete listing of all nine criteria.

Bradford Hill criteria and their applicability
Table 2
Bradford Hill criteria and their applicability

Both research questions addressed in the present study were directed at the criteria “strength of the association” and “specificity.” The strength of an association means that a causal association is more likely when the risk of developing a disorder in the exposed group is substantially higher than in the non-exposed group. The specificity expresses that the selective effect of the exposure—in this case, more intense music practice—increases the risk of the disorder; this is also supported by the fact that the manifestations of dystonia are instrument-specific. The other criteria are also well explained in the case of musician’s dystonia (Table 2), so that the assumption of a causal association between intensive playing and the manifestation of dystonia symptoms is justified.

Detailed knowledge regarding the type and duration of the exposure are important for the possible formal recognition of focal dystonia as an occupational disorder, as well as for the development of prevention and rehabilitation measures.

Quantifying exposures is difficult in view of the available data. In terms of the medical history, a minimum playing time of 10 practice years (26) has been reported; this corresponds to cumulatively 10 000 hours of musical practice (20) or six hours a day (22). Furthermore, an increase in the intensity of practice has been reported within the year preceding the initial manifestation of dystonia symptoms (17).

Different approaches have been reported for the purpose of modifying exposures. These include:

  • Playing very slowly (36)
  • Wearing a splint (37)
  • Learning Braille script for blind people in order to change sensorimotor processing (38).

Some 50% of affected musicians benefited from retraining strategies (4). Rates of occupational invalidity/disability varied between 25% (3) and 50% (39).

Limitations

This systematic review and its results are subject to unavoidable weaknesses and limitations that have to be considered for the purposes of their interpretation. The literature search was not conducted independently by two reviewers. The quality assessment of the included articles identified studies of poor to moderate quality, which was mostly due to the fact that the research was clinical, not (prospective) epidemiological research, with the relevant study design and consideration of biases. Especially exposure data were based on patients’ medical histories and retrospectively collected data. We were, however, able to identify a large number of cases with good quality clinical documentation of their disorder. Studies from different countries showed a consistent overall picture regarding focal dystonia in professional musicians.

Conclusion

This systematic review shows a clear and potentially causal association between intense musical practice and the manifestation of focal dystonia in professional musicians. This means that, in our estimation, the scientific requirements for including focal, task-specific dystonia among professional musicians in the catalogue of occupational disorders are essentially provided.

We furthermore make a plea to generate the relevant health awareness among musicians, whereby they play their instruments ergonomically and take breaks, as well as avoid stereotypical and repetitive exercises.

Clear diagnostic guidelines are desirable, since an early and appropriate diagnosis by a specialist would limit incorrect diagnoses and subsequent ineffective treatments that might entail adverse effects. Further research projects to elucidate the causes and prevention of dystonia in musicians are urgently needed.

Addendum

The medical expert advisory panel for occupational diseases in the German Federal Ministry of Labour and Social Affairs decided on 1 December 2015 to recommend to the regulator to include a new occupational disease: “Focal dystonia as a neurological disorder in musicians as a result of fine-motor activity at a high level of intensity.“

Conflict of interest statement

The authors declare that no conflict of interest exists.

Funding: The systematic review that forms the basis of this publication was funded by the German Statutory Accident Insurance, DGUV research project FB-0202, www.dguv.de/Projektdatenbank/0202/4177377v1.pdf

Manuscript received on 25 April 2015, revised version accepted on
13 August 2015.

Translated from the original German by Birte Twisselmann, PhD.

Corresponding author
Dr. med. Verena Rozanski
Neurologische Klinik und Poliklinik
Klinikum Großhadern
Marchioninistr. 15
81377 München, Germany
verena.rozanski@med.uni-muenchen.de

@Supplementary material
For eReferences please refer to:
www.aerzteblatt-international.de/ref5115

eFigure, eTables:
www.aerzteblatt-international.de/15m0871

1.
Altenmüller E, Baur V, Hofmann A, Lim VK, Jabusch HC: Musician’s cramp as manifestation of maladaptive brain plasticity: arguments from instrumental differences. Ann N Y Acad 2012; 1252: 259–65 CrossRef MEDLINE
2.
Altenmüller E, Jabusch HC: Focal dystonia in musicians: phenomenology, pathophysiology, triggering factors, and treatment. Med Probl Perf Artists 2010; 25: 3–9 MEDLINE
3.
Lee A, Eich C, Ioannou CI, Altenmuller E: Life satisfaction of musicians with focal dystonia. Occup Med (Lond) 2015.
4.
van Vugt FT, Boullet L, Jabusch HC, Altenmuller E: Musician’s dystonia in pianists: long-term evaluation of retraining and other therapies. Parkinsonism Relat Disord 2014; 20: 8–12 CrossRef MEDLINE
5.
Spahn C, Richter B, Altenmüller E: MusikerMedizin: Diagnostik, Therapie und Prävention von musikerspezifischen Erkrankungen. Stuttgart: Schattauer Verlag 2011.
6.
Roze E, Soumare A, Pironneau I, et al.: Case-control study of writer’s cramp. Brain 2009; 132: 756–64 CrossRef MEDLINE
7.
Dhungana S, Jankovic J: Yips and other movement disorders in golfers. Mov Disord 2013; 28: 576–81 CrossRef MEDLINE
8.
Scolding NJ, Smith SM, Sturman S, Brookes GB, Lees AJ: Auctioneer’s jaw: a case of occupational oromandibular hemidystonia. Mov Disord 1995; 10: 508–9 CrossRef MEDLINE
9.
Le Floch A, Vidailhet M, Flamand-Rouviere C, et al.: Table tennis dystonia. Mov Disord 2010; 25: 394–7 CrossRef MEDLINE
10.
Schmidt A, Jabusch HC, Altenmuller E, et al.: Etiology of musician’s dystonia: familial or environmental? Neurology 2009; 72: 1248–54 CrossRef MEDLINE PubMed Central
11.
Defazio G, Berardelli A, Hallett M: Do primary adult-onset focal dystonias share aetiological factors? Brain 2007; 130: 1183–93 CrossRef MEDLINE
12.
Baur V, Jabusch HC, Altenmuller E: Behavioral factors influence the phenotype of musician’s dystonia. Mov Disord 2011; 26: 1780–1 CrossRef MEDLINE
13.
Rozanski VE, Rehfuess E, Botzel K, Nowak D: A systematic review of extensive music-practice as a risk factor for musician`s dystonia; review protocol. 2013. www.klinikum.uni-muenchen.de/Institut-und-Poliklinik-fuer-Arbeits-Sozial-und-Umweltmedizin/download/inhalt/publikatonslisten/Rozanski-studienprotokolle-online.pdf (last accessed on 7 December 2015)
14.
Liberati A, Altman DG, Tetzlaff J, et al.: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009; 339–43 CrossRef
15.
Voss PH, Rehfuess EA: Quality appraisal in systematic reviews of public health interventions: an empirical study on the impact of choice of tool on meta-analysis. J Epidemiol Community Health 2013; 67: 98–104 CrossRef MEDLINE
16.
Brandfonbrener AG, Robson C: Review of 113 musicians with focal dystonia seen between 1985 and 2002 at a clinic for performing artists. Adv Neurol 2004; 94: 255–6 MEDLINE
17.
Conti AM, Pullman S, Frucht SJ: The hand that has forgotten its cunning—lessons from musicians’ hand dystonia. Mov Disord 2008; 23: 1398–406 CrossRef MEDLINE
18.
Ferrarin MRM, Ramella M, Osio M, Mailland E, Converti RM: Does instrumented movement analysis alter, objectively confirm, or not affect clinical decision-making in musicians with focal dystonia? Med Problems Perf Artists 2008; 23: 99–106.
19.
Frucht SJ, Fahn S, Greene PE, et al.: The natural history of embouchure dystonia. Mov Disord 2001; 16: 899–906 CrossRef MEDLINE
20.
Granert O, Peller M, Jabusch HC, Altenmuller E, Siebner HR: Sensorimotor skills and focal dystonia are linked to putaminal grey-matter volume in pianists. J Neurol Neurosurg Psych 2011; 82: 1225–31 CrossRef MEDLINE
21.
Hayes MW, Yiannikas C: Treatment of upper limb dystonia with botulinum toxin. J Clin Neurosci 1996; 3: 124–8 CrossRef
22.
Hirata Y, Schulz M, Altenmuller E, Elbert T, Pantev C:
Sensory mapping of lip representation in brass musicians with embouchure dystonia. Neuroreport 2004; 15: 815–8 CrossRef MEDLINE
23.
Kadota H, Nakajima Y, Miyazaki M, et al.: An fMRI study of musicians with focal dystonia during tapping tasks. J Neurol 2010; 257: 1092–8 CrossRef MEDLINE
24.
Lederman RJ: Embouchure problems in brass instrumentalists. Med Probl Perf Artists 2001; 16: 53–7.
25.
Nowak DA, Rosenkranz K, Topka H, Rothwell J: Disturbances of grip force behaviour in focal hand dystonia: evidence for a generalised impairment of sensory-motor integration? J Neurol Neurosurg Psych 2005; 76: 953–9 CrossRef MEDLINE PubMed Central
26.
Pujol J, Roset-Llobet J, Rosines-Cubells D, et al.: Brain cortical activation during guitar-induced hand dystonia studied by functional MRI. NeuroImage 2000; 12: 257–67 CrossRef MEDLINE
27.
Rosenkranz K, Butler K, Williamon A, Cordivari C, Lees AJ, Rothwell JC: Sensorimotor reorganization by proprioceptive training in musician’s dystonia and writer’s cramp. Neurology 2008; 70: 304–15 CrossRef MEDLINE
28.
Rosset-Llobet J, Candia V, Fabregas S, Ray W, Pascual-Leone A: Secondary motor disturbances in 101 patients with musician’s dystonia. J Neurol Neurosurg Psych 2007; 78: 949–53 CrossRef MEDLINE PubMed Central
29.
Schuele S, Lederman RJ: Long-term outcome of focal dystonia in string instrumentalists. Mov Disord 2004; 19: 43–8 CrossRef MEDLINE
30.
Tubiana R: Prolonged neuromuscular rehabilitation for musician`s focal dystonia. Med Probl Perf Artists 2003; 18: 166–9.
31.
Tubiana R: Musician’s focal dystonia. Hand Clin 2003; 19: 303–8, vii CrossRef
32.
Epidemiological Study of Dystonia in Europe Collaborative G:
A prevalence study of primary dystonia in eight European countries. J Neurol 2000; 247: 787–92 CrossRef MEDLINE
33.
Steeves TD, Day L, Dykeman J, Jette N, Pringsheim T:
The prevalence of primary dystonia: a systematic review and meta-analysis. Mov Disord 2012; 27: 1789–96 CrossRef MEDLINE
34.
Schmidt A, Jabusch HC, Altenmuller E, Kasten M, Klein C: Challenges of making music: what causes musician’s dystonia? JAMA Neurol 2013; 70: 1456–9 CrossRef MEDLINE
35.
Lucas RM, Michael AJ: Association or causation: evaluating links between „environment and disease“. Bull World Health Organ 2005; 83: 792–5 MEDLINE PubMed Central
36.
Sakai N: Slow-down exercise for the treatment of focal hand dystonia in pianists. Med Probl Perf Artists 2006; 21: 25–8.
37.
Satoh M, Narita M, Tomimoto H: Three cases of focal embouchure dystonia: classifications and successful therapy using a dental splint. Eur Neurol 2011; 66: 85–90 CrossRef MEDLINE
38.
Zeuner KE, Hallett M: Sensory training as treatment for focal hand dystonia: a 1-year follow-up. Mov Disord 2003; 18: 1044–7 CrossRef MEDLINE
39.
Jabusch HC, Zschucke D, Schmidt A, Schuele S, Altenmuller E: Focal dystonia in musicians: treatment strategies and long-term outcome in 144 patients. Mov Disord 2005; 20: 1623–6 CrossRef MEDLINE
e1.
Altenmüller E: Focal dystonia: advances in brain imaging and understanding of fine motor control in musicians. Hand Clin 2003; 19: 523–38, xi CrossRef
e2.
Aranguiz R, Chana-Cuevas P, Alburquerque D, Leon M: Focal dystonia in musicians. Neurologia 2011; 26: 45–52 MEDLINE
e3.
Hochberg FH, Harris SU, Blattert TR: Occupational hand cramps: professional disorders of motor control. Hand Clin 1990; 6: 417–28 MEDLINE
e4.
Knishkowy B: Instrumental musicians with upper extremity disorders. Med Probl Perform Art 1986; 1: 85–9.
e5.
Jankovic J, Ashoori A: Movement disorders in musicians.
Mov Disord 2008; 23: 1957–65 CrossRef MEDLINE
e6.
Lederman RJ: Neuromuscular and musculoskeletal problems in instrumental musicians. Muscle Nerve 2003; 27: 549–61 CrossRef MEDLINE
e7.
Rosset-Llobet J, Candia V, Fabregas i Molas S: The challenge of diagnosing focal hand dystonia in musicians. Eur J Neurol 2009; 16: 864–9 CrossRef MEDLINE PubMed Central
e8.
Lie-Nemeth TJ: Focal dystonia in musicians. Phys Med Rehabil Clin N Am 2006; 17: 781–7 CrossRef MEDLINE
e9.
Brandfonbrener A: Musicians with focal dystonia: a report of 58 cases seen during a ten-year period at a performing arts medicine clinic. Med Probl Perform Art 1995; 10: 121–8.
e10.
Newmark J, Hochberg FH: Isolated painless manual incoordination in 57 musicians. J Neurol Neurosurg Psychiatry 1987; 50: 291–5 CrossRef
e11.
Pullman SL, Hristova AH: Musician’s dystonia. Neurology 2005; 64: 186–7 CrossRef MEDLINE
e12.
Lederman RJ: AAEM minimonograph #43: neuromuscular problems in the performing arts. Muscle Nerve 1994; 17: 569–77 CrossRef MEDLINE
e13.
Byl NN, Merzenich MM, Jenkins WM: A primate genesis model of focal dystonia and repetitive strain injury: I. Learning-induced dedifferentiation of the representation of the hand in the primary somatosensory cortex in adult monkeys. Neurology 1996; 47: 508–20 CrossRef MEDLINE
e14.
Topp KS, Byl NN: Movement dysfunction following repetitive hand opening and closing: anatomical analysis in Owl monkeys. Mov Disord 1999; 14: 295–306 CrossRef
Neurological Clinic and Policlinic, Großhadern Hospital, Ludwig-Maximilians-Universität München: Dr. med. Rozanski, Prof. Dr. med. Bötzel
Department of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität München: PD Dr. rer. nat. Rehfuess
Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universität München: Prof. Dr. med. Nowak
Selection process and inclusion of suitable studies into the systematic review according to
the PRISMA criteria
Figure 1
Selection process and inclusion of suitable studies into the systematic review according to the PRISMA criteria
Distribution of
focal dystonia by
instrument group in
the 1144 musicians
included in this
review
Figure 2
Distribution of focal dystonia by instrument group in the 1144 musicians included in this review
Key messages
Prevalence rates of dystonia in musicians as reported in included studies
Table 1
Prevalence rates of dystonia in musicians as reported in included studies
Bradford Hill criteria and their applicability
Table 2
Bradford Hill criteria and their applicability
Distribution of
focal dystonia by
instrument group in
analogy to Figure 2,
after performing a
sensitivity analysis,
which includes 930
musicians from 4
large case series
eFigure
Distribution of focal dystonia by instrument group in analogy to Figure 2, after performing a sensitivity analysis, which includes 930 musicians from 4 large case series
Overview of databases searched and the articles obtained through the search
eTable 1
Overview of databases searched and the articles obtained through the search
Clinical epidemiological studies
eTable 2
Clinical epidemiological studies
Overview of all included studies, data extraction, and quality assessment
eTable 3
Overview of all included studies, data extraction, and quality assessment
1.Altenmüller E, Baur V, Hofmann A, Lim VK, Jabusch HC: Musician’s cramp as manifestation of maladaptive brain plasticity: arguments from instrumental differences. Ann N Y Acad 2012; 1252: 259–65 CrossRef MEDLINE
2. Altenmüller E, Jabusch HC: Focal dystonia in musicians: phenomenology, pathophysiology, triggering factors, and treatment. Med Probl Perf Artists 2010; 25: 3–9 MEDLINE
3. Lee A, Eich C, Ioannou CI, Altenmuller E: Life satisfaction of musicians with focal dystonia. Occup Med (Lond) 2015.
4.van Vugt FT, Boullet L, Jabusch HC, Altenmuller E: Musician’s dystonia in pianists: long-term evaluation of retraining and other therapies. Parkinsonism Relat Disord 2014; 20: 8–12 CrossRef MEDLINE
5.Spahn C, Richter B, Altenmüller E: MusikerMedizin: Diagnostik, Therapie und Prävention von musikerspezifischen Erkrankungen. Stuttgart: Schattauer Verlag 2011.
6.Roze E, Soumare A, Pironneau I, et al.: Case-control study of writer’s cramp. Brain 2009; 132: 756–64 CrossRef MEDLINE
7.Dhungana S, Jankovic J: Yips and other movement disorders in golfers. Mov Disord 2013; 28: 576–81 CrossRef MEDLINE
8.Scolding NJ, Smith SM, Sturman S, Brookes GB, Lees AJ: Auctioneer’s jaw: a case of occupational oromandibular hemidystonia. Mov Disord 1995; 10: 508–9 CrossRef MEDLINE
9.Le Floch A, Vidailhet M, Flamand-Rouviere C, et al.: Table tennis dystonia. Mov Disord 2010; 25: 394–7 CrossRef MEDLINE
10.Schmidt A, Jabusch HC, Altenmuller E, et al.: Etiology of musician’s dystonia: familial or environmental? Neurology 2009; 72: 1248–54 CrossRef MEDLINE PubMed Central
11. Defazio G, Berardelli A, Hallett M: Do primary adult-onset focal dystonias share aetiological factors? Brain 2007; 130: 1183–93 CrossRef MEDLINE
12.Baur V, Jabusch HC, Altenmuller E: Behavioral factors influence the phenotype of musician’s dystonia. Mov Disord 2011; 26: 1780–1 CrossRef MEDLINE
13.Rozanski VE, Rehfuess E, Botzel K, Nowak D: A systematic review of extensive music-practice as a risk factor for musician`s dystonia; review protocol. 2013. www.klinikum.uni-muenchen.de/Institut-und-Poliklinik-fuer-Arbeits-Sozial-und-Umweltmedizin/download/inhalt/publikatonslisten/Rozanski-studienprotokolle-online.pdf (last accessed on 7 December 2015)
14.Liberati A, Altman DG, Tetzlaff J, et al.: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009; 339–43 CrossRef
15.Voss PH, Rehfuess EA: Quality appraisal in systematic reviews of public health interventions: an empirical study on the impact of choice of tool on meta-analysis. J Epidemiol Community Health 2013; 67: 98–104 CrossRef MEDLINE
16.Brandfonbrener AG, Robson C: Review of 113 musicians with focal dystonia seen between 1985 and 2002 at a clinic for performing artists. Adv Neurol 2004; 94: 255–6 MEDLINE
17.Conti AM, Pullman S, Frucht SJ: The hand that has forgotten its cunning—lessons from musicians’ hand dystonia. Mov Disord 2008; 23: 1398–406 CrossRef MEDLINE
18.Ferrarin MRM, Ramella M, Osio M, Mailland E, Converti RM: Does instrumented movement analysis alter, objectively confirm, or not affect clinical decision-making in musicians with focal dystonia? Med Problems Perf Artists 2008; 23: 99–106.
19.Frucht SJ, Fahn S, Greene PE, et al.: The natural history of embouchure dystonia. Mov Disord 2001; 16: 899–906 CrossRef MEDLINE
20.Granert O, Peller M, Jabusch HC, Altenmuller E, Siebner HR: Sensorimotor skills and focal dystonia are linked to putaminal grey-matter volume in pianists. J Neurol Neurosurg Psych 2011; 82: 1225–31 CrossRef MEDLINE
21.Hayes MW, Yiannikas C: Treatment of upper limb dystonia with botulinum toxin. J Clin Neurosci 1996; 3: 124–8 CrossRef
22. Hirata Y, Schulz M, Altenmuller E, Elbert T, Pantev C:
Sensory mapping of lip representation in brass musicians with embouchure dystonia. Neuroreport 2004; 15: 815–8 CrossRef MEDLINE
23.Kadota H, Nakajima Y, Miyazaki M, et al.: An fMRI study of musicians with focal dystonia during tapping tasks. J Neurol 2010; 257: 1092–8 CrossRef MEDLINE
24.Lederman RJ: Embouchure problems in brass instrumentalists. Med Probl Perf Artists 2001; 16: 53–7.
25.Nowak DA, Rosenkranz K, Topka H, Rothwell J: Disturbances of grip force behaviour in focal hand dystonia: evidence for a generalised impairment of sensory-motor integration? J Neurol Neurosurg Psych 2005; 76: 953–9 CrossRef MEDLINE PubMed Central
26.Pujol J, Roset-Llobet J, Rosines-Cubells D, et al.: Brain cortical activation during guitar-induced hand dystonia studied by functional MRI. NeuroImage 2000; 12: 257–67 CrossRef MEDLINE
27.Rosenkranz K, Butler K, Williamon A, Cordivari C, Lees AJ, Rothwell JC: Sensorimotor reorganization by proprioceptive training in musician’s dystonia and writer’s cramp. Neurology 2008; 70: 304–15 CrossRef MEDLINE
28.Rosset-Llobet J, Candia V, Fabregas S, Ray W, Pascual-Leone A: Secondary motor disturbances in 101 patients with musician’s dystonia. J Neurol Neurosurg Psych 2007; 78: 949–53 CrossRef MEDLINE PubMed Central
29.Schuele S, Lederman RJ: Long-term outcome of focal dystonia in string instrumentalists. Mov Disord 2004; 19: 43–8 CrossRef MEDLINE
30.Tubiana R: Prolonged neuromuscular rehabilitation for musician`s focal dystonia. Med Probl Perf Artists 2003; 18: 166–9.
31.Tubiana R: Musician’s focal dystonia. Hand Clin 2003; 19: 303–8, vii CrossRef
32. Epidemiological Study of Dystonia in Europe Collaborative G:
A prevalence study of primary dystonia in eight European countries. J Neurol 2000; 247: 787–92 CrossRef MEDLINE
33.Steeves TD, Day L, Dykeman J, Jette N, Pringsheim T:
The prevalence of primary dystonia: a systematic review and meta-analysis. Mov Disord 2012; 27: 1789–96 CrossRef MEDLINE
34.Schmidt A, Jabusch HC, Altenmuller E, Kasten M, Klein C: Challenges of making music: what causes musician’s dystonia? JAMA Neurol 2013; 70: 1456–9 CrossRef MEDLINE
35.Lucas RM, Michael AJ: Association or causation: evaluating links between „environment and disease“. Bull World Health Organ 2005; 83: 792–5 MEDLINE PubMed Central
36.Sakai N: Slow-down exercise for the treatment of focal hand dystonia in pianists. Med Probl Perf Artists 2006; 21: 25–8.
37.Satoh M, Narita M, Tomimoto H: Three cases of focal embouchure dystonia: classifications and successful therapy using a dental splint. Eur Neurol 2011; 66: 85–90 CrossRef MEDLINE
38.Zeuner KE, Hallett M: Sensory training as treatment for focal hand dystonia: a 1-year follow-up. Mov Disord 2003; 18: 1044–7 CrossRef MEDLINE
39.Jabusch HC, Zschucke D, Schmidt A, Schuele S, Altenmuller E: Focal dystonia in musicians: treatment strategies and long-term outcome in 144 patients. Mov Disord 2005; 20: 1623–6 CrossRef MEDLINE
e1. Altenmüller E: Focal dystonia: advances in brain imaging and understanding of fine motor control in musicians. Hand Clin 2003; 19: 523–38, xi CrossRef
e2.Aranguiz R, Chana-Cuevas P, Alburquerque D, Leon M: Focal dystonia in musicians. Neurologia 2011; 26: 45–52 MEDLINE
e3.Hochberg FH, Harris SU, Blattert TR: Occupational hand cramps: professional disorders of motor control. Hand Clin 1990; 6: 417–28 MEDLINE
e4.Knishkowy B: Instrumental musicians with upper extremity disorders. Med Probl Perform Art 1986; 1: 85–9.
e5.Jankovic J, Ashoori A: Movement disorders in musicians.
Mov Disord 2008; 23: 1957–65 CrossRef MEDLINE
e6.Lederman RJ: Neuromuscular and musculoskeletal problems in instrumental musicians. Muscle Nerve 2003; 27: 549–61 CrossRef MEDLINE
e7.Rosset-Llobet J, Candia V, Fabregas i Molas S: The challenge of diagnosing focal hand dystonia in musicians. Eur J Neurol 2009; 16: 864–9 CrossRef MEDLINE PubMed Central
e8.Lie-Nemeth TJ: Focal dystonia in musicians. Phys Med Rehabil Clin N Am 2006; 17: 781–7 CrossRef MEDLINE
e9.Brandfonbrener A: Musicians with focal dystonia: a report of 58 cases seen during a ten-year period at a performing arts medicine clinic. Med Probl Perform Art 1995; 10: 121–8.
e10.Newmark J, Hochberg FH: Isolated painless manual incoordination in 57 musicians. J Neurol Neurosurg Psychiatry 1987; 50: 291–5 CrossRef
e11.Pullman SL, Hristova AH: Musician’s dystonia. Neurology 2005; 64: 186–7 CrossRef MEDLINE
e12.Lederman RJ: AAEM minimonograph #43: neuromuscular problems in the performing arts. Muscle Nerve 1994; 17: 569–77 CrossRef MEDLINE
e13.Byl NN, Merzenich MM, Jenkins WM: A primate genesis model of focal dystonia and repetitive strain injury: I. Learning-induced dedifferentiation of the representation of the hand in the primary somatosensory cortex in adult monkeys. Neurology 1996; 47: 508–20 CrossRef MEDLINE
e14.Topp KS, Byl NN: Movement dysfunction following repetitive hand opening and closing: anatomical analysis in Owl monkeys. Mov Disord 1999; 14: 295–306 CrossRef

Deutsches Ärzteblatt international

Info

Specialities