DÄ internationalArchive9/2014Effects and Risks Associated with Novel Psychoactive Substances

Review article

Effects and Risks Associated with Novel Psychoactive Substances

Mislabeling and Sale as Bath Salts, Spice, and Research Chemicals

Dtsch Arztebl Int 2014; 111(9): 139-47; DOI: 10.3238/arztebl.2014.0139

Hohmann, N; Mikus, G; Czock, D

Background: The number of newly reported psychoactive substances in Europe is now higher than ever. In order to evade legal restrictions, old and novel psychoactive substances from medical research and their derivatives are commonly mislabeled as “not for human consumption” and offered for sale on the Internet and elsewhere. Such substances are widely taken by young people as “club drugs.” Their consumption must be considered in the differential diagnosis of psychiatric, neurological, cardiovascular, or metabolic disturbances of unclear origin in a young patient.

Methods: Selective review of pertinent literature retrieved by a PubMed search, including publications by government-sponsored organizations.

Results: From 2010 to 2012, 163 substances were reported to the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), mostly either synthetic cannabinoids (39.3%) or synthetic cathinones (16.6%). Synthetic cannabinoids alter mood and perception; intoxications cause agitation, tachycardia, and arterial hypertension. Synthetic cathinones are hallucinogenic stimulants with predominantly cardiovascular and psychiatric side effects. Severe intoxications cause serotonin syndrome and potentially fatal rhabdomyolysis. Substances in either of these classes often escape detection in screening tests.

Conclusion: Young persons who present with agitation and cardiovascular and/or psychiatric manifestations of unclear origin and whose drug screening tests are negative may be suffering from an intoxication with a novel psychoactive substance. Physicians should know the classes of such substances and their effects. Targeted toxicological analysis can be carried out in a toxicology laboratory or a facility for forensic medicine.

LNSLNS

The number of novel psychoactive substances (NPS) in Europe has reached a historic peak. In the European Union’s early warning system, 41 such substances were reported to the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) in 2010, 49 in 2011, and 73 in 2012 (1). The more common types were synthetic cannabinoids (39.3%), synthetic cathinones (16.6%), and phenylethylamines (14.1%); piperazines and tryptamines were less common (1). Many NPS are experimental substances from medical research, derivatives of such substances, or previously approved drugs for human consumption. They can be classified by their major effects as sedatives, stimulants, or hallucinogens, or by their chemical structure (e1).

Commerce in these substances occupies a legal gray area (2). In Germany, drugs for human use are regulated on the national level by the Medicinal Products Act (Arzneimittelgesetz, AMG) and the Narcotics Act (Betäubungsmittelgesetz, BtMG). To evade legal restrictions, NPS are mislabeled as “research chemicals,” “herbal incense,” or “bath salts” that are “not for human consumption.” It takes time for the reporting of a new substance to be followed by its characterization, regulation on the European level, and, finally, implementation of Europe-wide regulations by national legislatures; thus, many NPS are not yet covered by the the BtMG (Table 1). The chemical structure of some of them is still unknown. As only individual substances, rather than substance classes, can be prohibited by name under the BtMG, dealers can offer consumers new derivatives of a substance as soon as it has been prohibited. This situation could be improved by amending the BtMG to allow the prohibition of substance classes. Newspaper reports commonly speak of “legal highs,” although the expression “novel psychoactive substances” seems more appropriate for scientific discussion (e2). Users meet in Internet fora to discuss new substances and their dosages, effects, and side effects. The products can be ordered through online webshops and delivered by mail. NPS are easily available and attractively packaged; they appeal to consumers because of their putative legality and wrongly supposed low risk (3).

Cannabinones, cathinones, and phenylethylamines listed in the appendices to the German Narcotics Act (BtMG)
Cannabinones, cathinones, and phenylethylamines listed in the appendices to the German Narcotics Act (BtMG)
Table 1
Cannabinones, cathinones, and phenylethylamines listed in the appendices to the German Narcotics Act (BtMG)

NPS are generally undetectable by immunoassays used for drug screening. Synthetic cannabinoids apparently do not cross-react with the THC test, and synthetic cathinones are not detected by the ELISA-based amphetamine test. Some NPS do, however, cross-react with tests for methamphetamine. Piperazine gives mixed results on the amphetamine test (e3). NPS are generally detected by other means, mainly by specific gas-chromatographic mass spectrometry (GC-MS) and liquid-chromatographic tandem mass spectrometry (LC-MS/MS). Thus, targeted analysis can be carried out in a toxicology laboratory or a forensic medical facility (e3e5).

For many types of NPS, our current knowledge base is incomplete. Their study is fraught with methodological difficulties; in particular, controlled clinical trials are hard to carry out and only very few have actually been performed. Most of the available data are derived from retro- or prospectively analyzed case series of intoxication and from interviews with drug users, and are thus of limited scientific value. The attribution of particular manifestations to particular substances is often difficult because unidentified substances may be consumed and multiple substances may be taken at once.

The consumption of novel psychoactive substances in Germany

In the MoSyD (Monitoring System for Drug Trends) study, data on the consumption of NPS were collected in Frankfurt am Main, Germany. In 2012, the lifetime prevalence of “spice” consumption stabilized at 7% for persons aged 15 to 18, with a 30-day prevalence of 2% (4). 16% stated that they knew someone who consumed “herbal incense” (4). For other types of NPS, such as “bath salts,” the lifetime prevalence of consumption was found to be 2%, and the 30-day prevalence 1% (4). A number of reports appeared in 2012 about the consumption of “research chemicals” in the party scene and among marginalized youth (4).

Hermanns-Clausen et al. analyzed a series of 50 patients who were seen in an emergency room and reported to the Freiburg Emergency Poison Control Center because of suspected synthetic cannabinoid intoxication, from September 2008 to April 2011 (5).

Moreover, publications from Germany include a case series of persons driving under the influence of synthetic cannabinoids and a case report of withdrawal manifestations and dependency after the consumption of “spice gold” (6, 7).

The actual percentage of users that develop side effects may be underestimated in such studies.

A direct comparison of current figures on the prevalence of substance consumption among adolescents with the reports from Germany leads us to suspect that NPS are, in fact, used much more commonly than the statistics reveal. The reasons for this probably include

  • a lack of information,
  • inadequate means of detection,
  • only rare confirmation by laboratory testing in patients with clinical findings of unclear origin,
  • and/or the rarity of intoxication compared to consumption.

A learning effect may also be present: once hospital emergency room staff have sufficient personal experience with NPS intoxications, they are less likely to call the Poison Control Center to ask for help with management.

Objectives

In this review, we discuss the pharmacology and clinical effects of the more common classes of NPS in the light of pertinent information from scientific reports and from publications of government-sponsored organizations.

Methods

A selective keyword search was carried out in the PubMed database (Table 2). All abstracts were read and publications with information on the pharmacology, epidemiology, or clinical manifestations of NPS were selected for analysis. The references of these publications were also examined for important sources not revealed by the search. 63 publications were considered informative enough for use in the preparation of this review (Table 2).

Keywords and sources
Keywords and sources
Table 2
Keywords and sources

Synthetic cathinones (“bath salts”)

Synthetic cathinone derivatives are bk-amphetamines (β-keto-α-methyl-phenylalkylamines) that are chemically related to methamphetamine (“crystal meth”) and 3,4-methylenedioxymethamphetamine (“ecstasy”) (Figure 1) (8). Cathinone is found naturally in the khat plant (Catha edulis), which is chewed in Yemen for its stimulant effect (e6). Cathinone derivatives were used as antidepressants in the Soviet Union in the 1930s (9). Methamphetamine was given extensively to German soldiers in the Second World War, under the trade name Pervitin, to counteract fatigue. Pyrovalerone was tested in France and the USA in 1970 for use as a stimulant in patients with chronic fatigue; investigation revealed marked CNS stimulation and accentuation of the subjective need for movement (e7). Synthetic cathinones, particularly mephedrone, are now commonly sold with intentional mislabeling as “bath salts.” They come in the form of white, beige, or brown crystals (10). They are apparently synthesized and packaged in China and/or India for the European market (e8). In an online poll of British clubbers, carried out in 2009, 43% said they had used mephedrone at least once (11). In the USA, consumption figures and the number of calls to Poison Control Centers rose from 2009 to 2011, but began to drop again in 2012 (12, 13). Among twelfth-graders in the USA, the 1-year prevalence of synthetic cathinone consumption was 1.3% in 2012 (e9); the prevalence of consumption of “legal high products” in Germany is similar (2%) (4). The substances most commonly detected in cases of cathinone intoxication are MDPV, pyrovalerone, methylone, pentylone, and alpha-PVP (14).

Classification of phenylethylamines by chemical structure
Classification of phenylethylamines by chemical structure
Figure 1
Classification of phenylethylamines by chemical structure

“Bath salts” are rapidly absorbed: the “high” is at its most intense 1.5 hours after oral consumption and lasts for 2–8 hours, depending on the substance (15, 16). Synthetic cathinones are potent inhibitors of the serotonin reuptake transporter (SERT) as well as the reuptake transporters for dopamine (DAT) and norepinephrine (NAT) (e10). Selectivity varies from one substance to another (e10). These substances can be classified in three groups (e11):

  • cocaine-MDMA mixed type (mephedrone, methylone, ethylone, butylone, and naphyrone): nonspecific monoamine reuptake inhibition with about five times more DAT than SERT inhibition. All except naphyrone also promote serotonin release. Mephedrone promotes dopamine release.
  • methamphetamine-like type (cathinone, flephedrone, and methcathinone): these substances inhibit dopamine and norepinephrine reuptake and promote dopamine release.
  • pyrovalerone type (pyrovalerone, MDPV): selective inhibition of catecholamine reuptake. Does not promote the release of monoamines.

Flephedrone, mephedrone, and methcathinone are also 5HT2A agonists. The blood–brain barrier is highly permeable to mephedrone and MDPV in particular (e10). These substances are metabolized through the activity of cytochrome P450 isoenzymes or catechol-O-methyltransferase and are excreted either by the kidneys or by the biliary system (e4).

Users of synthetic cathinones report euphoria, increased drive, loquacity, a subjective need to move and act, lightening of mood, diminished hostility, clear thinking, sexual stimulation, and heightened perception of music (11, 16). Doses ranging from 5 to 20 mg are taken, usually orally but also intranasally, rectally, and intravenously (16). Drugs in this group induce a strong desire for further doses: 80% of users surveyed said that they had taken more mephedrone than they had originally planned, and 45% said they had used up their personal supply of the drug (17). There have been individual case reports of users who gave themselves more than 10 intravenous doses one after the other (18). The adverse effects of synthetic cathinones are cardiovascular, neurological, and psychiatric (Box 1) (13, 14, 19, e12); the main ones are tachycardia, arterial hypertension, hallucinations, and agitation (20). Users are particularly disturbed by an unpleasant bodily odor that is characteristic of mephedrone use (21). Rare complications include syncope, ST-segment changes, and myocarditis (22).

Adverse effects of, and signs of intoxication with, synthetic cathinones
Adverse effects of, and signs of intoxication with, synthetic cathinones
Box 1
Adverse effects of, and signs of intoxication with, synthetic cathinones

The psychotic manifestations of synthetic cathinone use often consist of paranoia with auditory and visual hallucinations (23), which can persist for up to four weeks and take a more severe course than with other amphetamines (23, 24). In most cases of intoxication with psychotic symptoms, MDPV is the cause (13).

Intoxication can manifest itself clinically with sympathomimetic effects, delirium, or the serotonin syndrome. The patients develop aggressiveness, psychotic manifestations, fever up to 41.5 °C, and/or arterial hypertension (21, 24), and they may have metabolic acidosis, an elevated creatine kinase (CK) level, and muscle damage ranging to rhabdomyolysis (21, 24). The simultaneous appearance of hyperthermia and rhabdomyolysis in MDMA intoxication has been reported and attributed to decoupling of oxidative phosphorylation (e13). In very severe cases, disseminated intravascular coagulation (DIC) can arise, leading to potentially fatal multi-organ failure. From September 2009 to October 2011, there were 128 documented deaths associated with mephedrone use in the United Kingdom: of the 62 cases that could be assessed further, death was due to the acute toxicity of the drug itself in 26, and to self-destructive or suicidal behavior in 18 (25). In case reports of deaths in 2011 and 2012, other synthetic cathinones play a larger role, such as MDPV, butylone, and methedrone (e11).

Synthetic cannabinoids (“spice”)

“Spice” appeared in Europe in 2005, accompanied by the claim that its psychotropic effect was induced purely by natural, botanical components (26). The real active substance was discovered in 2009 with the detection of undeclared synthetic cannabinoid receptor (CB) agonists by Volker Auwärter and colleagues at the University of Freiburg (Germany) (27).

CB agonists are classified according to their chemical structure, as follows (28) (Figure 2):

Classification of cannabinoids
Classification of cannabinoids
Figure 2
Classification of cannabinoids
  • classic cannabinoids, such as delta-9-tetrahydrocannabinol (THC) from the cannabis plant (Cannabis sativa), the approved anti-emetic nabilone, and HU cannabinoids, which closely resemble THC.
  • non-classic cannabinoids, such as the cyclohexylphenol (CP) cannabinoids.
  • aminoalkylindoles: the JWH series, synthesized by the chemist J. W. Huffmann, contains many CB ligands.
  • eicosanoids, such as the endocannabinoid anandamide.

These substances are sold as “herbal incense” supposedly derived from plants, and the consumers smoke them. The synthetic cannabinoids are sprayed onto pharmacologically inactive vegetable matter accounting for most of the bulk of “spice” by weight. The ingredients listed on the package are generally incomplete or false. One gram of “spice” contains 77.5 to 202 mg of synthetic cannabinoid, with high variability from one package to another (29, 30). Consumers do not know what active substance they are using, or in what dose. Further ingredients include the β2-mimetic substance clenbuterol, which may be responsible for the sympathomimetic manifestations of “spice” intoxication (tachycardia, hypokalemia), and large amounts of tocopherol (vitamin E), possibly added in order to prevent detection (27).

Research on the cannabinoid system has revealed several hundred agonists that might be abused, with varying affinity for the CB1 und CB2 receptors (3). The endocannabinoid system participates in the regulation of physiological processes such as caloric balance and the control of arterial smooth muscle tone (e14, e15). CB1 receptors are found mainly in the nervous system and CB2 receptors mainly in the spleen, the tonsils, and cells of the immune system, as well as on particular types of neurons (28). Synthetic cannabinoids are potent CB1 agonists: the affinity of JWH018 for the CB1 receptor is five times as high as that of THC, while that of AM-694 is 500 times as high (e16, e17). Users report that “spice” has a stronger psychotropic effect than marijuana (31).

Synthetic cannabinoids exert a THC-like effect, with alterations of mood, perception, sleep and wakefulness, body temperature, and cardiovascular function (5). Their side effects are more varied and more severe than those of THC, with the more common ones being tachycardia, arterial hypertension, hyperglycemia, hypokalemia, hallucinations, and agitation (Box 2) (5, 28, e18, e19). Chest pain, myocardial ischemia, and psychosis are rarer (7, 32). As the “spice” sold at any particular time may contain new cannabinoids, previously unrecognized side effects may arise. In the USA, for example, widespread use of the fluoridated synthetic cannabinoid XLR-11 was associated with a series of cases of acute renal failure in young users in late 2012 (26). Synthetic cannabinoids can cause dependency (7, 32). Very few deaths attributable to the consumption of synthetic cannabinoids have been reported to date: there has been one case of fatal coronary ischemia, as well as one of suicide in a user who became depressed after consuming a cannabinoid substance (3).

Adverse effects of, and signs of intoxication with, synthetic cannabinoids
Adverse effects of, and signs of intoxication with, synthetic cannabinoids
Box 2
Adverse effects of, and signs of intoxication with, synthetic cannabinoids

Other NPS (“research chemicals”)

Piperazine derivatives

Piperazine is an anthelminthic drug that is structurally related to various other classes of drugs, including antidepressants (e.g., trazodone), atypical neuroleptic drugs (e.g., olanzapine), and antihistamines (e.g., cetirizine). Psychoactive piperazine derivatives such as 1-benzylpiperazine (BZP) and trifluoromethylphenylpiperazine (TFMPP) have been drugs of abuse since about the year 2000 (33). They are often taken orally in multi-substance combinations. Piperazine derivatives stimulate the release of dopamine, norepinephrine, and serotonin and inhibit monoamine reuptake (34). Exceptionally for psychoactive substances, BZP and TFMPP have been studied in controlled trials. The manifestations of intoxication are typical for stimulants (eTable 1). A study of the effects of combined BZB, TFMPP, and alcohol consumption was terminated because of serious adverse effects—arterial hypertension, tachycardia, agitation, anxiety, hallucinations, vomiting, insomnia, and migraine (35). The manifestations depend on the plasma concentration of the drug: concentrations between 0 and 0.5 mg/L are associated with anxiety, vomiting, and palpitations, concentrations above 0.5 mg/L with agitation and confusion. Seizures may occur with plasma concentrations as low as 0.05 mg/L but regularly accompany concentrations above 2.15 mg/L (36).

Summary of characteristics of novel psychoactive substances
Summary of characteristics of novel psychoactive substances
eTable
Summary of characteristics of novel psychoactive substances

Aminoindanes

MDAI (5,6-methylenedioxy-2-aminoindane), 5-IAI (5-iodo-2-aminoindane), and MMAI (5-methoxy-6-methyl-2-aminoindane) have a so-called entactogenic effect (i.e., they intensify the perception of one’s own emotions) and are therefore marketed as “legal” alternatives to MDMA (37). These drugs are weak inhibitors of monoamine reuptake, but they powerfully stimulate the release of non-vesicular serotonin. 5-IAI and MDAI became more widespread around the time that mephedrone was forbidden. Its desired effects are mild euphoria, distorted spatial and temporal perception, intense color perception, and the sense that one has a better understanding of other persons’ emotions. The effect commences as soon as 10 minutes after oral consumption of the drug, lasts an hour, and then comes gradually to an end. The undesired effects are of a cardiovascular, neurological, or psychiatric nature (eTable 1). The scientific literature contains very little information about the potential toxicity of 2-aminoindane derivatives. In animal studies, a dose 40 times higher than a behavior-changing dose had no toxic effects (including neurotoxic ones). Yet these are by no means harmless substances: among human users, there have been reported cases of hyperthermia, serotonin syndrome, rhabdomyolysis, and death (37, 38, e20).

“Bromo-dragonfly”

“Bromo-dragonfly” ([R]-1-[4-bromofuro(2,3-f)[1]benzofuran-8-yl]propane-2-amine) is a substituted phenylethylamine with a similar hallucinogenic effect to that of LSD (39). It is a potent agonist of 5-HT1, 5-HT2A , and α1receptors. Its latency of effect is up to six hours; the effect (visual and auditory hallucinations, a feeling of well-being and solidarity) can last as long as three days (39). The amount of active substance varies markedly from one batch to another, so that reliable dosing is impossible and there is a danger of overdose (e21). “Bromo-dragonfly” is highly toxic: it can cause seizures, acidosis, pulmonary edema, and prolonged vasospasm leading to gangrene and multiple organ failure (39, 40). Deaths have been reported, and there has also been a reported case of uncontrollable vasospasm despite maximal vasodilatory treatment, leading to the amputation of multiple fingers (39, 40).

Overview

Today’s psychoactive substance users can choose among various stimulants, hallucinogens, and sedatives with a mouse-click (eTable 1). Some of these substances are prohibited by the German Narcotics Act, but many are too new to be covered by it. The substances in circulation change frequently, but their effects and toxicities tend to remain the same; different groups of substances have typical profiles (eTable 1), which, however, overlap. Stimulants, in particular, can cause sympathomimetic manifestations or a serotonin syndrome. If standard drug screening is negative in such a situation, an intoxication with a new psychotropic substance should be suspected. The diagnosis can be established by analysis in a specialized laboratory, e.g., a toxicology laboratory or a forensic medical facility.

Conflict of interest statement

The authors state that no conflict of interests exists.

Manuscript received on 30 August 2013, revised version accepted on 16 December 2013.

Translated from the original German by Ethan Taub, M.D.

Corresponding author
PD Dr. med. David Czock
Medizinische Klinik (Krehl-Klinik)
Abt. Klinische Pharmakologie und Pharmakoepidemiologie
Im Neuenheimer Feld 410
D-69120 Heidelberg, Germany
david.czock @med.uni-heidelberg.de

@For eReferences please refer to:
www.aerzteblatt-international.de/ref0914

eTable:
www.aerzteblatt-international.de/14m0139

1.
Europäische Beobachtungsstelle für Drogen und Drogensucht: Drogenangebot in Europa. In: Europäischer Drogenbericht 2013: Trends und Entwicklungen. Luxemburg: Amt für Veröffentlichungen der Europäischen Union 2013; 28–9.
2.
Nobis: „LegaI-High”-Produkte – wirklich illegal? – Oder: Wie ein Aufsatz sich verselbstständigt! NStZ 2012; 422.
3.
Fattore L, Fratta W, Beyond THC: The New Generation of Cannabinoid Designer Drugs. Front Behav Neurosci 2011; 5: 60. CrossRef MEDLINE PubMed Central
4.
Bernhard C, Werse B, Schell-Mack C: Jahresbericht MoSyD. Drogentrends in Frankfurt am Main 2012. Centre for Drug Research 2013.
5.
Hermanns-Clausen M, Kneisel S, Szabo B, Auwärter V: Acute toxicity due to the confirmed consumption of synthetic cannabinoids: clinical and laboratory findings. Addiction 2013; 108: 534–44. CrossRef MEDLINE
6.
Musshoff F, Madea B, Kernbach-Wighton G, et al.: Driving under the influence of synthetic cannabinoids („Spice“): a case series. Int J Legal Med 2014: 128: 59–64. CrossRef MEDLINE
7.
Zimmermann US, Winkelmann PR, Pilhatsch M, Nees JA, Spanagel R, Schulz K: Withdrawal phenomena and dependence syndrome after the consumption of „spice gold“. Dtsch Arztebl Int 2009; 106: 464–7. VOLLTEXT
8.
Glennon RA, Yousif M, Naiman N, Kalix P: Methcathinone: a new and potent amphetamine-like agent. Pharmacol Biochem Behav 1987; 26: 547–51. CrossRef MEDLINE
9.
Kelly JP: Cathinone derivatives: a review of their chemistry, pharmacology and toxicology. Drug Test Anal 2011; 3: 439–53. CrossRef MEDLINE
10.
Karila L, Reynaud M: GHB and synthetic cathinones: clinical effects and potential consequences. Drug Test Anal 2011; 3: 552–9. CrossRef MEDLINE
11.
Winstock A, Mitcheson L, Ramsey J, Davies S, Puchnarewicz M, Marsden J: Mephedrone: use, subjective effects and health risks. Addiction 2011; 106: 1991–6. CrossRef MEDLINE
12.
Wood KE: Exposure to bath salts and synthetic tetrahydrocannabinol from 2009 to 2012 in the United States. J Pediatr 2013; 163: 213–6. CrossRef MEDLINE
13.
Spiller HA, Ryan ML, Weston RG, Jansen J: Clinical experience with and analytical confirmation of „bath salts“ and „legal highs“ (synthetic cathinones) in the United States. Clin Toxicol 2011; 49: 499–505. CrossRef MEDLINE
14.
Marinetti LJ, Antonides HM: Analysis of synthetic cathinones commonly found in bath salts in human performance and postmortem toxicology: method development, drug distribution and Interpretation of Results. J Anal Toxicol 2013; 37: 135–46. CrossRef MEDLINE
15.
Schifano F, Albanese A, Fergus S, et al. and Psychonaut Web Mapping, ReDNet Research Groups: Mephedrone (4-methylmethcathinone; ’meow meow’): chemical, pharmacological and clinical issues. Psychopharmacology 2011; 214: 593–602. CrossRef MEDLINE
16.
Ross EA, Watson M, Goldberger B: „Bath salts“ intoxication. N Engl J Med 2011; 365: 967–8. CrossRef MEDLINE
17.
Freeman TP, Morgan CJ, Vaughn-Jones J, Hussain N, Karimi K, Curran HV: Cognitive and subjective effects of mephedrone and factors influencing use of a ’new legal high’. Addiction 2012; 107: 792–800. CrossRef MEDLINE
18.
Belton P, Sharngoe T, Maguire FM, Polhemus M: Cardiac infection and sepsis in 3 intravenous bath salts drug users. Clin Infect Dis 2013; 56: e102–4. CrossRef MEDLINE
19.
Wood DM, Davies S, Greene SL, et al.: Case series of individuals with analytically confirmed acute mephedrone toxicity. Clin Toxicol 2010; 48: 924–7. CrossRef MEDLINE
20.
Murphy CM, Dulaney AR, Beuhler MC, Kacinko S: „Bath salts“ and „plant food“ products: the experience of one regional US poison center. J Med Toxicol 2013; 9: 42–8. CrossRef MEDLINE
21.
Penders TM, Gestring RE, Vilensky DA: Excited delirium following use of synthetic cathinones (bath salts). Gen Hosp Psychiatry 2012; 34: 647–50. CrossRef MEDLINE
22.
Nicholson PJ, Quinn MJ, Dodd JD: Headshop heartache: acute mephedrone ’meow’ myocarditis. Heart 2010; 96: 2051–2. CrossRef MEDLINE
23.
Loeffler G, Penn A, Ledden B: „Bath salt“-induced agitated paranoia: a case series. J Stud Alcohol Drugs 2012; 73: 706. MEDLINE
24.
Borek HA, Holstege CP: Hyperthermia and multiorgan failure after abuse of „bath salts“ containing 3,4-methylenedioxypyrovalerone. Ann Emerg Med 2012; 60: 103–5. CrossRef MEDLINE
25.
Schifano F, Corkery J, Ghodse AH: Suspected and confirmed fatalities associated with mephedrone (4-methylmethcathinone, „meow meow“) in the United Kingdom. J Clin Psychopharmacol 2012; 32: 710–4. CrossRef MEDLINE
26.
Centers for Disease Control and Prevention: Acute kidney injury associated with synthetic cannabinoid use-multiple states 2012. MMWR Morb Mortal Wkly Rep 2013; 62: 93–8. MEDLINE
27.
Auwärter V, Dresen S, Weinmann W, Müller M, Pütz M, Ferreirós N: ’Spice’ and other herbal blends: harmless incense or cannabinoid designer drugs? J Mass Spectrom 2009; 44: 832–7. CrossRef MEDLINE
28.
Seely KA, Prather PL, James LP, Moran JH: Marijuana-based drugs: innovative therapeutics or designer drugs of abuse? Mol Interv 2011; 11: 36–51. CrossRef MEDLINE PubMed Central
29.
Simolka K, Lindigkeit R, Schiebel HM, Papke U, Ernst L, Beuerle T: Analysis of synthetic cannabinoids in „spice-like“ herbal highs: snapshot of the German market in summer 2011. Anal Bioanal Chem 2012; 404: 157–71. CrossRef MEDLINE
30.
Hillebrand J, Olszewski D, Sedefov R: Legal highs on the internet. Subst Use Misuse 2010; 45: 330–40. CrossRef MEDLINE
31.
Griffiths P, Sedefov R, Gallegos A, Lopez D: How globalization and market innovation challenge how we think about and respond to drug use: ’Spice’ a case study. Addiction 2010; 105: 951–3. CrossRef MEDLINE
32.
Müller H, Sperling W, Köhrmann M, Huttner HB, Kornhuber J, Maler JM: The synthetic cannabinoid Spice as a trigger for an acute exacerbation of cannabis induced recurrent psychotic episodes. Schizophr Res 2010; 118: 309–10. CrossRef MEDLINE
33.
de Boer D, Bosman IJ, Hidvegi E, et al.: Piperazine-like compounds: a new group of designer drugs-of-abuse on the European market. For Sci Int 2001; 121: 47–56. MEDLINE
34.
Elliott S: Current awareness of piperazines: pharmacology and toxicology. Drug Test Anal 2011; 3: 430–8. CrossRef MEDLINE
35.
Thompson I, Williams G, Caldwell B, et al.: Randomised double-blind, placebo-controlled trial of the effects of the ’party pills’ BZP/TFMPP alone and in combination with alcohol. J Psychopharmacol 2010; 24: 1299–308. CrossRef MEDLINE
36.
Gee P, Gilbert M, Richardson S, Moore G, Paterson S, Graham P: Toxicity from the recreational use of 1-benzylpiperazine. Clin Toxicol 2008; 46: 802–7. CrossRef MEDLINE
37.
Coppola M, Mondola R: 5-iodo-2-aminoindan (5-IAI): chemistry, pharmacology, and toxicology of a research chemical producing MDMA-like effects. Toxicol Lett 2013; 218: 24–9. CrossRef MEDLINE
38.
Sainsbury PD, Kicman AT, Archer RP, King LA, Braithwaite RA: Aminoindanes-the next wave of ’legal highs’? Drug Test Anal 2011; 3: 479–82. CrossRef MEDLINE
39.
Corazza O, Schifano F, Farre M, et al.: Designer drugs on the internet: a phenomenon out-of-control? The emergence of hallucinogenic drug Bromo-Dragonfly. Curr Clin Pharmacol 2011; 6: 125–9. CrossRef MEDLINE
40.
Thorlacius K, Borna C, Personne M: Bromo-dragon fly—life-threatening drug. Can cause tissue necrosis as demonstrated by the first described case. Lakartidningen 2008; 105: 1199–200. MEDLINE
e1.
Carroll FI, Lewin AH, Mascarella SW, Seltzman HH, Reddy PA: Designer drugs: a medicinal chemistry perspective. Ann N Y Acad Sci 2012; 1248: 18–38. CrossRef MEDLINE
e2.
Corazza O, Demetrovics Z, van den Brink W, Schifano F: ’Legal highs’ an inappropriate term for ’Novel Psychoactive Drugs’ in drug prevention and scientific debate. Int J Drug Policy 2013; 24: 82–3. CrossRef MEDLINE
e3.
Rosenbaum CD, Carreiro SP, Babu KM: Here today, gone tomorrow…and back again? A review of herbal marijuana alternatives (K2, Spice), synthetic cathinones (bath salts), kratom, Salvia divinorum, methoxetamine, and piperazines. J Med Toxicol 2012; 8: 15–32. CrossRef MEDLINE PubMed Central
e4.
Meyer MR, Wilhelm J, Peters FT, Maurer HH: Beta-keto amphetamines: studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography-mass spectrometry. Anal Bioanal Chem 2010; 397: 1225–33. CrossRef MEDLINE
e5.
Kneisel S, Auwärter V, Kempf J: Analysis of 30 synthetic cannabinoids in oral fluid using liquid chromatography-electrospray ionization tandem mass spectrometry. Drug Test Anal 2013; 5: 657–69. CrossRef MEDLINE
e6.
Graziani M, Milella MS, Nencini P: Khat chewing from the pharmacological point of view: an update. Subst Use Misuse 2008; 43: 762–83. CrossRef MEDLINE
e7.
Goldberg J, Gardos G, Cole JO: A controlled evaluation of pyrovalerone in chronically fatigued volunteers. Int Pharmacopsychiatry 1973; 8: 60–9. MEDLINE
e8.
Baron M, Elie M, Elie L: An analysis of legal highs: do they contain what it says on the tin? Drug Test Anal 2011; 3: 576–81. CrossRef MEDLINE
e9.
Maxwell JC: Psychoactive substances-Some new, some old: A scan of the situation in the U.S. Drug Alcohol Depend 2013 [in Press]. MEDLINE
e10.
Simmler LD, Buser TA, Donzelli M, et al.: Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 2013; 168: 458–70. CrossRef MEDLINE PubMed Central
e11.
Zawilska JB, Wojcieszak J: Designer cathinones-an emerging class of novel recreational drugs. Forensic Sci Int 2013; 231: 42–53. CrossRef MEDLINE
e12.
James D, Adams RD, Spears R, et al.: Clinical characteristics of mephedrone toxicity reported to the U.K. National Poisons Information Service. Emerg Med J 2011; 28: 686–9. CrossRef MEDLINE
e13.
Nakagawa Y, Suzuki T, Tayama S, Ishii H, Ogata A: Cytotoxic effects of 3,4-methylenedioxy-N-alkylamphetamines, MDMA and its analogues, on isolated rat hepatocytes. Arch Toxicol 2009; 83: 69–80. CrossRef MEDLINE
e14.
Di Marzo V, Matias I: Endocannabinoid control of food intake and energy balance. Nat Neurosci 2005; 8: 585–9. CrossRef MEDLINE
e15.
Randall MD, Kendall DA, O’Sullivan S: The complexities of the cardiovascular actions of cannabinoids. Br J Pharmacol 2004; 142: 20–6. CrossRef MEDLINE PubMed Central
e16.
Atwood BK, Huffman J, Straiker A, Mackie K: JWH018, a common constituent of ’Spice’ herbal blends, is a potent and efficacious cannabinoid CB receptor agonist. Br J Pharmacol 2010; 160: 585–93. CrossRef MEDLINE PubMed Central
e17.
Psychoyos D, Vinod KY: Marijuana, Spice ’herbal high’, and early neural development: implications for rescheduling and legalization. Drug Test Anal 2013; 5: 27–45. CrossRef MEDLINE
e18.
Forrester MB: Synthetic cathinone exposures reported to Texas poison centers. Am J Drug Alcohol Abuse 2012; 38: 609–15. CrossRef MEDLINE
e19.
Gunderson EW, Haughey HM, Ait-Daoud N, Joshi AS, Hart CL: „Spice“ and „K2“ herbal highs: a case series and systematic review of the clinical effects and biopsychosocial implications of synthetic cannabinoid use in humans. Am J Addict 2012; 21: 320–6. CrossRef MEDLINE
e20.
Corkery JM, Elliott S, Schifano F, Corazza O, Ghodse AH: MDAI (5,6-methylenedioxy-2-aminoindane; 6,7-dihydro-5H-cyclopenta[f][1,3]benzodioxol-6-amine; ’sparkle’; ’mindy’) toxicity: a brief overview and update. Hum Psychopharmacol 2013; 28: 345–55. CrossRef MEDLINE
e21.
Psychonaut Web Mapping Group: Bromo-Dragonfly Report. London UK: Institute of Psychiatry, King’s College London; 2009.
e22.
United Nations Office on Drugs and Crime (UNODC): Details for Piperazines. www.unodc.org/LSS/SubstanceGroup/Details/ 8242b801–355c-4454–9fdc-ba4b7e7689d5#_ftn11 (last accessed on 4 December 2013).
e23.
Hill SL, Thomas SH: Clinical toxicology of newer recreational drugs. Clin Toxicol (Phila) 2011; 49: 705–19. CrossRef MEDLINE
Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital:
Hohmann, M.D.; Prof. Mikus; Czock, M.D.
Adverse effects of, and signs of intoxication with, synthetic cathinones
Adverse effects of, and signs of intoxication with, synthetic cathinones
Box 1
Adverse effects of, and signs of intoxication with, synthetic cathinones
Adverse effects of, and signs of intoxication with, synthetic cannabinoids
Adverse effects of, and signs of intoxication with, synthetic cannabinoids
Box 2
Adverse effects of, and signs of intoxication with, synthetic cannabinoids
Classification of phenylethylamines by chemical structure
Classification of phenylethylamines by chemical structure
Figure 1
Classification of phenylethylamines by chemical structure
Classification of cannabinoids
Classification of cannabinoids
Figure 2
Classification of cannabinoids
Key messages
Cannabinones, cathinones, and phenylethylamines listed in the appendices to the German Narcotics Act (BtMG)
Cannabinones, cathinones, and phenylethylamines listed in the appendices to the German Narcotics Act (BtMG)
Table 1
Cannabinones, cathinones, and phenylethylamines listed in the appendices to the German Narcotics Act (BtMG)
Keywords and sources
Keywords and sources
Table 2
Keywords and sources
Summary of characteristics of novel psychoactive substances
Summary of characteristics of novel psychoactive substances
eTable
Summary of characteristics of novel psychoactive substances
1.Europäische Beobachtungsstelle für Drogen und Drogensucht: Drogenangebot in Europa. In: Europäischer Drogenbericht 2013: Trends und Entwicklungen. Luxemburg: Amt für Veröffentlichungen der Europäischen Union 2013; 28–9.
2.Nobis: „LegaI-High”-Produkte – wirklich illegal? – Oder: Wie ein Aufsatz sich verselbstständigt! NStZ 2012; 422.
3.Fattore L, Fratta W, Beyond THC: The New Generation of Cannabinoid Designer Drugs. Front Behav Neurosci 2011; 5: 60. CrossRef MEDLINE PubMed Central
4.Bernhard C, Werse B, Schell-Mack C: Jahresbericht MoSyD. Drogentrends in Frankfurt am Main 2012. Centre for Drug Research 2013.
5.Hermanns-Clausen M, Kneisel S, Szabo B, Auwärter V: Acute toxicity due to the confirmed consumption of synthetic cannabinoids: clinical and laboratory findings. Addiction 2013; 108: 534–44. CrossRef MEDLINE
6. Musshoff F, Madea B, Kernbach-Wighton G, et al.: Driving under the influence of synthetic cannabinoids („Spice“): a case series. Int J Legal Med 2014: 128: 59–64. CrossRef MEDLINE
7.Zimmermann US, Winkelmann PR, Pilhatsch M, Nees JA, Spanagel R, Schulz K: Withdrawal phenomena and dependence syndrome after the consumption of „spice gold“. Dtsch Arztebl Int 2009; 106: 464–7. VOLLTEXT
8.Glennon RA, Yousif M, Naiman N, Kalix P: Methcathinone: a new and potent amphetamine-like agent. Pharmacol Biochem Behav 1987; 26: 547–51. CrossRef MEDLINE
9.Kelly JP: Cathinone derivatives: a review of their chemistry, pharmacology and toxicology. Drug Test Anal 2011; 3: 439–53. CrossRef MEDLINE
10.Karila L, Reynaud M: GHB and synthetic cathinones: clinical effects and potential consequences. Drug Test Anal 2011; 3: 552–9. CrossRef MEDLINE
11.Winstock A, Mitcheson L, Ramsey J, Davies S, Puchnarewicz M, Marsden J: Mephedrone: use, subjective effects and health risks. Addiction 2011; 106: 1991–6. CrossRef MEDLINE
12.Wood KE: Exposure to bath salts and synthetic tetrahydrocannabinol from 2009 to 2012 in the United States. J Pediatr 2013; 163: 213–6. CrossRef MEDLINE
13.Spiller HA, Ryan ML, Weston RG, Jansen J: Clinical experience with and analytical confirmation of „bath salts“ and „legal highs“ (synthetic cathinones) in the United States. Clin Toxicol 2011; 49: 499–505. CrossRef MEDLINE
14.Marinetti LJ, Antonides HM: Analysis of synthetic cathinones commonly found in bath salts in human performance and postmortem toxicology: method development, drug distribution and Interpretation of Results. J Anal Toxicol 2013; 37: 135–46. CrossRef MEDLINE
15.Schifano F, Albanese A, Fergus S, et al. and Psychonaut Web Mapping, ReDNet Research Groups: Mephedrone (4-methylmethcathinone; ’meow meow’): chemical, pharmacological and clinical issues. Psychopharmacology 2011; 214: 593–602. CrossRef MEDLINE
16.Ross EA, Watson M, Goldberger B: „Bath salts“ intoxication. N Engl J Med 2011; 365: 967–8. CrossRef MEDLINE
17.Freeman TP, Morgan CJ, Vaughn-Jones J, Hussain N, Karimi K, Curran HV: Cognitive and subjective effects of mephedrone and factors influencing use of a ’new legal high’. Addiction 2012; 107: 792–800. CrossRef MEDLINE
18.Belton P, Sharngoe T, Maguire FM, Polhemus M: Cardiac infection and sepsis in 3 intravenous bath salts drug users. Clin Infect Dis 2013; 56: e102–4. CrossRef MEDLINE
19.Wood DM, Davies S, Greene SL, et al.: Case series of individuals with analytically confirmed acute mephedrone toxicity. Clin Toxicol 2010; 48: 924–7. CrossRef MEDLINE
20.Murphy CM, Dulaney AR, Beuhler MC, Kacinko S: „Bath salts“ and „plant food“ products: the experience of one regional US poison center. J Med Toxicol 2013; 9: 42–8. CrossRef MEDLINE
21.Penders TM, Gestring RE, Vilensky DA: Excited delirium following use of synthetic cathinones (bath salts). Gen Hosp Psychiatry 2012; 34: 647–50. CrossRef MEDLINE
22.Nicholson PJ, Quinn MJ, Dodd JD: Headshop heartache: acute mephedrone ’meow’ myocarditis. Heart 2010; 96: 2051–2. CrossRef MEDLINE
23.Loeffler G, Penn A, Ledden B: „Bath salt“-induced agitated paranoia: a case series. J Stud Alcohol Drugs 2012; 73: 706. MEDLINE
24.Borek HA, Holstege CP: Hyperthermia and multiorgan failure after abuse of „bath salts“ containing 3,4-methylenedioxypyrovalerone. Ann Emerg Med 2012; 60: 103–5. CrossRef MEDLINE
25.Schifano F, Corkery J, Ghodse AH: Suspected and confirmed fatalities associated with mephedrone (4-methylmethcathinone, „meow meow“) in the United Kingdom. J Clin Psychopharmacol 2012; 32: 710–4. CrossRef MEDLINE
26.Centers for Disease Control and Prevention: Acute kidney injury associated with synthetic cannabinoid use-multiple states 2012. MMWR Morb Mortal Wkly Rep 2013; 62: 93–8. MEDLINE
27.Auwärter V, Dresen S, Weinmann W, Müller M, Pütz M, Ferreirós N: ’Spice’ and other herbal blends: harmless incense or cannabinoid designer drugs? J Mass Spectrom 2009; 44: 832–7. CrossRef MEDLINE
28.Seely KA, Prather PL, James LP, Moran JH: Marijuana-based drugs: innovative therapeutics or designer drugs of abuse? Mol Interv 2011; 11: 36–51. CrossRef MEDLINE PubMed Central
29.Simolka K, Lindigkeit R, Schiebel HM, Papke U, Ernst L, Beuerle T: Analysis of synthetic cannabinoids in „spice-like“ herbal highs: snapshot of the German market in summer 2011. Anal Bioanal Chem 2012; 404: 157–71. CrossRef MEDLINE
30.Hillebrand J, Olszewski D, Sedefov R: Legal highs on the internet. Subst Use Misuse 2010; 45: 330–40. CrossRef MEDLINE
31.Griffiths P, Sedefov R, Gallegos A, Lopez D: How globalization and market innovation challenge how we think about and respond to drug use: ’Spice’ a case study. Addiction 2010; 105: 951–3. CrossRef MEDLINE
32.Müller H, Sperling W, Köhrmann M, Huttner HB, Kornhuber J, Maler JM: The synthetic cannabinoid Spice as a trigger for an acute exacerbation of cannabis induced recurrent psychotic episodes. Schizophr Res 2010; 118: 309–10. CrossRef MEDLINE
33.de Boer D, Bosman IJ, Hidvegi E, et al.: Piperazine-like compounds: a new group of designer drugs-of-abuse on the European market. For Sci Int 2001; 121: 47–56. MEDLINE
34.Elliott S: Current awareness of piperazines: pharmacology and toxicology. Drug Test Anal 2011; 3: 430–8. CrossRef MEDLINE
35.Thompson I, Williams G, Caldwell B, et al.: Randomised double-blind, placebo-controlled trial of the effects of the ’party pills’ BZP/TFMPP alone and in combination with alcohol. J Psychopharmacol 2010; 24: 1299–308. CrossRef MEDLINE
36.Gee P, Gilbert M, Richardson S, Moore G, Paterson S, Graham P: Toxicity from the recreational use of 1-benzylpiperazine. Clin Toxicol 2008; 46: 802–7. CrossRef MEDLINE
37.Coppola M, Mondola R: 5-iodo-2-aminoindan (5-IAI): chemistry, pharmacology, and toxicology of a research chemical producing MDMA-like effects. Toxicol Lett 2013; 218: 24–9. CrossRef MEDLINE
38.Sainsbury PD, Kicman AT, Archer RP, King LA, Braithwaite RA: Aminoindanes-the next wave of ’legal highs’? Drug Test Anal 2011; 3: 479–82. CrossRef MEDLINE
39. Corazza O, Schifano F, Farre M, et al.: Designer drugs on the internet: a phenomenon out-of-control? The emergence of hallucinogenic drug Bromo-Dragonfly. Curr Clin Pharmacol 2011; 6: 125–9. CrossRef MEDLINE
40.Thorlacius K, Borna C, Personne M: Bromo-dragon fly—life-threatening drug. Can cause tissue necrosis as demonstrated by the first described case. Lakartidningen 2008; 105: 1199–200. MEDLINE
e1.Carroll FI, Lewin AH, Mascarella SW, Seltzman HH, Reddy PA: Designer drugs: a medicinal chemistry perspective. Ann N Y Acad Sci 2012; 1248: 18–38. CrossRef MEDLINE
e2.Corazza O, Demetrovics Z, van den Brink W, Schifano F: ’Legal highs’ an inappropriate term for ’Novel Psychoactive Drugs’ in drug prevention and scientific debate. Int J Drug Policy 2013; 24: 82–3. CrossRef MEDLINE
e3.Rosenbaum CD, Carreiro SP, Babu KM: Here today, gone tomorrow…and back again? A review of herbal marijuana alternatives (K2, Spice), synthetic cathinones (bath salts), kratom, Salvia divinorum, methoxetamine, and piperazines. J Med Toxicol 2012; 8: 15–32. CrossRef MEDLINE PubMed Central
e4.Meyer MR, Wilhelm J, Peters FT, Maurer HH: Beta-keto amphetamines: studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography-mass spectrometry. Anal Bioanal Chem 2010; 397: 1225–33. CrossRef MEDLINE
e5.Kneisel S, Auwärter V, Kempf J: Analysis of 30 synthetic cannabinoids in oral fluid using liquid chromatography-electrospray ionization tandem mass spectrometry. Drug Test Anal 2013; 5: 657–69. CrossRef MEDLINE
e6.Graziani M, Milella MS, Nencini P: Khat chewing from the pharmacological point of view: an update. Subst Use Misuse 2008; 43: 762–83. CrossRef MEDLINE
e7.Goldberg J, Gardos G, Cole JO: A controlled evaluation of pyrovalerone in chronically fatigued volunteers. Int Pharmacopsychiatry 1973; 8: 60–9. MEDLINE
e8.Baron M, Elie M, Elie L: An analysis of legal highs: do they contain what it says on the tin? Drug Test Anal 2011; 3: 576–81. CrossRef MEDLINE
e9.Maxwell JC: Psychoactive substances-Some new, some old: A scan of the situation in the U.S. Drug Alcohol Depend 2013 [in Press]. MEDLINE
e10.Simmler LD, Buser TA, Donzelli M, et al.: Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 2013; 168: 458–70. CrossRef MEDLINE PubMed Central
e11.Zawilska JB, Wojcieszak J: Designer cathinones-an emerging class of novel recreational drugs. Forensic Sci Int 2013; 231: 42–53. CrossRef MEDLINE
e12.James D, Adams RD, Spears R, et al.: Clinical characteristics of mephedrone toxicity reported to the U.K. National Poisons Information Service. Emerg Med J 2011; 28: 686–9. CrossRef MEDLINE
e13.Nakagawa Y, Suzuki T, Tayama S, Ishii H, Ogata A: Cytotoxic effects of 3,4-methylenedioxy-N-alkylamphetamines, MDMA and its analogues, on isolated rat hepatocytes. Arch Toxicol 2009; 83: 69–80. CrossRef MEDLINE
e14.Di Marzo V, Matias I: Endocannabinoid control of food intake and energy balance. Nat Neurosci 2005; 8: 585–9. CrossRef MEDLINE
e15.Randall MD, Kendall DA, O’Sullivan S: The complexities of the cardiovascular actions of cannabinoids. Br J Pharmacol 2004; 142: 20–6. CrossRef MEDLINE PubMed Central
e16.Atwood BK, Huffman J, Straiker A, Mackie K: JWH018, a common constituent of ’Spice’ herbal blends, is a potent and efficacious cannabinoid CB receptor agonist. Br J Pharmacol 2010; 160: 585–93. CrossRef MEDLINE PubMed Central
e17.Psychoyos D, Vinod KY: Marijuana, Spice ’herbal high’, and early neural development: implications for rescheduling and legalization. Drug Test Anal 2013; 5: 27–45. CrossRef MEDLINE
e18.Forrester MB: Synthetic cathinone exposures reported to Texas poison centers. Am J Drug Alcohol Abuse 2012; 38: 609–15. CrossRef MEDLINE
e19.Gunderson EW, Haughey HM, Ait-Daoud N, Joshi AS, Hart CL: „Spice“ and „K2“ herbal highs: a case series and systematic review of the clinical effects and biopsychosocial implications of synthetic cannabinoid use in humans. Am J Addict 2012; 21: 320–6. CrossRef MEDLINE
e20.Corkery JM, Elliott S, Schifano F, Corazza O, Ghodse AH: MDAI (5,6-methylenedioxy-2-aminoindane; 6,7-dihydro-5H-cyclopenta[f][1,3]benzodioxol-6-amine; ’sparkle’; ’mindy’) toxicity: a brief overview and update. Hum Psychopharmacol 2013; 28: 345–55. CrossRef MEDLINE
e21.Psychonaut Web Mapping Group: Bromo-Dragonfly Report. London UK: Institute of Psychiatry, King’s College London; 2009.
e22.United Nations Office on Drugs and Crime (UNODC): Details for Piperazines. www.unodc.org/LSS/SubstanceGroup/Details/ 8242b801–355c-4454–9fdc-ba4b7e7689d5#_ftn11 (last accessed on 4 December 2013).
e23.Hill SL, Thomas SH: Clinical toxicology of newer recreational drugs. Clin Toxicol (Phila) 2011; 49: 705–19. CrossRef MEDLINE