DÄ internationalArchive7/2019The Diagnosis and Treatment of Dyscalculia

Clinical Practice Guideline

The Diagnosis and Treatment of Dyscalculia

Dtsch Arztebl Int 2019; 116: 107-14. DOI: 10.3238/arztebl.2019.0107

Haberstroh, S; Schulte-Körne, G

Background: 3–7% of all children, adolescents, and adults suffer from dyscalculia. Severe, persistent difficulty performing arithmetical calculations leads to marked impairment in school, at work, and in everyday life and elevates the risk of comorbid mental disorders. The state of the evidence underlying various methods of diagnosing and treating this condition is unclear.

Methods: Systematic literature searches were carried out from April 2015 to June 2016 in the PsycInfo, PSYNDEX, MEDLINE, ProQuest, ERIC, Cochrane Library, ICTRP, and MathEduc databases. The main search terms on dyscalculia were the German terms “Rechenstörung,” “Rechenschwäche,” and “Dyskalkulie” and the English terms “dyscalculia,” “math disorder, and “math disability.” The data from the retrieved studies were evaluated in a meta-analysis, and corresponding recommendations on the diagnosis and treatment of dyscalculia were jointly issued by the 20 societies and associations that participated in the creation of this guideline.

Results: The diagnosis of dyscalculia should only be made if the person in question displays below-average mathematical performance when seen in the context of relevant information from the individual history, test findings, clinical examination, and further psychosocial assessment. The treatment should be directed toward the individual mathematical problem areas. The mean effect size found across all intervention trials was 0.52 (95% confidence interval [0.42; 0.62]). Treatment should be initiated early on in the primary-school years and carried out by trained specialists in an individual setting; comorbid symptoms and disorders should also receive attention. Persons with dyscalculia are at elevated risk of having dyslexia as well (odds ratio [OR]: 12.25); the same holds for attention deficit/hyperactivity disorder and for other mental disorders, both internalizing (such as anxiety and depression) and externalizing (e.g., disorders characterized by aggression and rule-breaking).

Conclusion: Symptom-specific interventions involving the training of specific mathematical content yield the best results. There is still a need for high-quality intervention trials and for suitable tests and learning programs for older adolescents and adults.

LNSLNS

Three to seven percent of all children, adolescents, and adults suffer from dyscalculia. This figure corresponds to some 84 000 to 195 750 primary-school pupils in Germany (13). The significance of dyscalculia is still underappreciated. Poor mathematical ability places a major burden on society and on the affected individual (4). A large-scale cohort study in England revealed that poor mathematical ability is associated with major psychosocial and economic risks: 70–90% of the affected persons ended their schooling prematurely at age 16; at age 30, very few of them were employed full-time. Their probability of being unemployed and of developing depressive symptoms was twice as high as that of persons without dyscalculia (5). The costs arising from severe impairment of mathematical ability in Great Britain have been estimated at £2.4 billion per year (6).

Persons with dyscalculia have marked, persistent problems in applying the basic methods of arithmetic and in knowledge of math facts (the multiplication table); according to the ICD-10 definition of the disorder (code F81.2), these problems are not merely due to low intelligence or inadequate schooling. These problems are often associated with impaired basic processing of numbers and quantities (710) (Box). The sex ratio of sufferers is approximately even, with a trend toward a higher prevalence among girls (11).

Typical features of dyscalculia
Typical features of dyscalculia
Box
Typical features of dyscalculia

When dyscalculia is not recognized as such (as often happens), negative school experiences and repeated lack of success in mathematical tasks generate fears of failure as well as diminished self-esteem. The affected children and adolescents develop diverse mental symptoms and disorders (12). Symptoms are common (ca. 10–40%), both of the externalizing type (such as aggressiveness and agitation) and of the internalizing type (such as anxiety and depressed mood) (1315). Dyscalculia also displays high comorbidity with reading and/or spelling disorder (dyslexia; ca. 30–40%) as well as with attention deficit/hyperactivity disorder (ADHD; ca. 10–20%) (1, 2, 16, 17). Without specific intervention, dyscalculia often leads to scholastic failure and school absenteeism (12, 18).

The past two decades have seen markedly increased interest in dyscalculia, both among specialists studying the problem and among the general public (11, 19). Nonetheless, the new knowledge gained during this time has not been systematically integrated into medical, psychological, learning-therapeutic, and educational practice. A variety of procedures, criteria, and tests are used in the diagnostic evaluation of dyscalculia (7). Although a broad spectrum of therapeutic and learning programs is available, their effectiveness has generally not been studied or else remains unclear (20). Moreover, the classification of dyscalculia in the ICD-10, which is based exclusively on deficits in carrying out basic arithmetical tasks, must be questioned on the basis of recently acquired scientific knowledge.

The above considerations indicate the need for a guideline in which the current state of research in the field is systematically assessed and the participating scientific and professional organizations, working in collaboration, jointly issue clear and empirically well-grounded recommendations for the uniform and valid diagnostic evaluation and effective treatment of this condition. Twenty societies and associations under the leadership of the German Society of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy (eBox 1) have now created the world’s first evidence- and consensus-based S3 guideline on the diagnosis and treatment of dyscalculia (guideline No. 028-046 of the Association of the Scientific Medical Societies in Germany, Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften [AWMF]).

Participating organizations (voting representant*)
Participating organizations (voting representant*)
eBox 1
Participating organizations (voting representant*)

Methods

This guideline is divided into four sections concerning, respectively, the symptoms, diagnosis, treatment, and comorbidities of dyscalculia. The current state of research in the field was evaluated by systematic literature searches in multiple scientific databases (PsycINFO, Medline, ProQuest, ERIC, Cochrane, ICTRP, PSYNDEX, MathEduc). With regard to tests and learning programs, further searches were carried out for materials issued by relevant specialized publishers. The retrieved publications were selected on the basis of multiple inclusion criteria for each of the four sections of the guideline (eBox 2). The overall procedure and flow charts for the literature search in each of the four areas are shown in eFigures 1 and 2.

Flow chart of the literature search
Flow chart of the literature search
eFigure 2
Flow chart of the literature search

The methodological assessment of study quality was performed with the aid of checklists for each relevant study type (e.g., randomized controlled trial, non-randomized controlled trial) (21, 22). On this basis, each study was assigned an evidence grade, according to the scheme of the Oxford Center for Evidence-Based Medicine (OCEBM) (23). The datasets for each of the four areas were meta-analytically evaluated.

The methodological quality of diagnostic tests was evaluated with the aid of a specially developed rank-ordering procedure. For all tests, a rank order was determined on the basis of how well each test fulfilled a set of quality criteria in comparison to the other tests.

Learning programs were only considered if they had been evaluated in at least one trial involving a control group, an intervention group, and a pre–post design. These programs were assessed with respect to the quality of the evaluative trials providing evidence for their efficacy. The main criterion was whether the evaluative trials had been subjected to peer review and displayed a correspondingly high scientific quality, and/or whether they were carried out in persons with dyscalculia and were therefore valid for the purposes of this guideline.

On the basis of the findings of the literature search and evaluation, all of the participating organizations developed and agreed upon the recommendations of the guideline in a consensus conference under the neutral moderation of the AWMF. For each recommendation, the degree of consensus was rated as a strong consensus (>95%), a consensus (76–95%), or majority approval (51–75%).

Findings

All recommendations emerging from the consensus conference were strong (i.e., recommendation grade A) and supported by a broad consensus (i.e., at least 76% approval). Moreover, the findings of further studies published after the end of the literature search period and the publication of the guideline were still consistent with the guideline’s recommendations (eBox 3).

Manifestations and diagnosis

Persons with dyscalculia have major difficulties in all areas of arithmetic (basic arithmetic operations, fact retrieval, word problems) (Table 1) and in the processing of numbers and quantities. They need much more time than persons without dyscalculia to solve problems. In addition to these mathematics-specific deficits, they have markedly impaired performance in visuospatial working memory (e.g., remembering the position of dots in a matrix) and in the suppression of distracting stimuli (inhibition).

Meta-analysis: persons with vs. persons without dyscalculia (the analysis shows positive effect sizes favoring persons without dyscalculia)
Meta-analysis: persons with vs. persons without dyscalculia (the analysis shows positive effect sizes favoring persons without dyscalculia)
Table 1
Meta-analysis: persons with vs. persons without dyscalculia (the analysis shows positive effect sizes favoring persons without dyscalculia)

The diagnosis of dyscalculia involves not only obligatory psychometric (arithmetical) testing, but also a clinical examination, thorough history-taking, and further psychosocial assessment. The medical diagnostic algorithm is shown in the Figure.

Algorithm for the diagnosis of dyscalculia
Algorithm for the diagnosis of dyscalculia
Figure
Algorithm for the diagnosis of dyscalculia

Clinical examination

The clinical diagnostic evaluation consists of a physical examination (including a neurological examination with testing of vision and hearing) and a standardized intelligence test. The diagnostic criteria for dyscalculia specify that impaired performance on mathematical tasks must not be attributable to low intelligence as defined by the ICD-10 (IQ <70), brain damage, brain disease (e.g., infantile cerebral palsy, epilepsy), or a previously undetected impairment of sight or hearing (24). The effects of neurogenetic disorders (e.g., fragile-X syndrome, 22q11 deletion syndrome) and other factors that can impair performance on mathematical tasks (e.g., premature birth, low birth weight) should also be taken into account in the differential diagnosis (2527).

History and further psychosocial assessment

The person’s biographical course of development and his or her familial and scholastic situation should be documented systematically, as should the effects of the performance deficits on mental and social development, school integration, and social participation (psychosocial integration).

In the differential diagnosis, other potential causes of difficulty in performing mathematical tasks must be ruled out, e.g.: inadequate schooling (frequent change of teachers or lessons being cancelled), insufficient learning and support opportunities (family conflicts, learning disorders in the family, poverty), prolonged absence from school, or the effects of other disorders on mathematical performance ability, such as anxiety disorders (school phobia).

To assure a correct diagnosis, supportive criteria for the diagnosis of dyscalculia should be applied, including family clustering of dyscalculia (28, 29) or difficulty in developing the concepts of number and quantity in the preschool years (10, 30).

Consideration of multiple risk factors sometimes enables prediction of the course and stability of dyscalculia: comorbid mental disorders, psychosocial stress factors (e.g., unsuccessful integration in school), and low family socioeconomic status should be taken into account, as these can affect the course of the disorder and the efficacy of interventions (16).

Psychometric testing

Psychometric tests (of mathematical performance) should be used to document, as completely as possible, the overall picture of the deficits. All tests were evaluated for methodological quality and assigned a rank order in a list (eTable 1). The tests at the top of the list are recommended; those in the top half of the list are considered to be of better quality than those in the bottom half. If no test from the top half of the list is suitable for measuring the particular deficits of the person to be tested, a test from the next (i.e., third) quarter of the list can be chosen. This would be the case, for example, if the subject is in the sixth grade and none of the tests in the top half of the list is normed for this level, but one from the third quarter of the list is so normed. The tests in the lowest quarter of the list should not be used. An abbreviated listing of the best tests is given in Table 2.

Recommended psychometric tests of mathematical performance (in alphabetical order)*
Recommended psychometric tests of mathematical performance (in alphabetical order)*
Table 2
Recommended psychometric tests of mathematical performance (in alphabetical order)*

Establishment of the diagnosis

The diagnosis is established on the basis of information from all three sources (testing, clinical examination, and history, including further psychosocial assessment) (Figure). Whatever test is used for mathematical performance, below-average performance (≤ 16th percentile) in mathematics must be documented, particularly in basic arithmetic operations and numerical and quantitative processing. The threshold value on the test that should be used as a criterion for the diagnosis depends on the degree to which the clinical examination, the history, and the psychosocial assessment support the suspected diagnosis of dyscalculia. If they do not do so, then a strict (low) threshold of 1.5 standard deviations below the age- or grade-appropriate mean is to be used (i.e., ≤ 7th percentile or T-value ≤ 35). On the other hand, if there is already evidence to support the diagnosis of dyscalculia (e.g., preschool difficulties with the concepts of number and quantity), the threshold test value need not be so strict and can be set at 1 standard deviation below the age- or grade-appropriate mean (i.e., ≤ 16th percentile or T-value ≤ 40).

The treatment of dyscalculia

All proposed interventional methods for dyscalculia must be scientifically evaluated with respect to their content and the conceptions of support and treatment that they embody. This is the only way to ensure that any positive effects are independent of other factors (e.g., the therapist–patient relationship). Evidence-based treatments are not yet available for all age groups, and there may thus be deviations in the treatment plan. The areas of mathematical performance that the diagnostic evaluation has shown to be problematic are the main targets of the therapeutic intervention. A meta-analysis on this topic has shown that symptom-specific interventions, in which persons with dyscalculia are mainly given mathematical tasks to practice, yields markedly better improvement in all areas of mathematical performance than no intervention at all or non–symptom-specific interventions that mainly train other skills (e.g., working memory). The mean effect size (Hedges’ g) in all intervention trials was 0.52 (95% confidence interval [0.42; 0.62]) (e14, e35e59). Performance in numerical and quantitative processing improved by 0.30 [0.08; 0.52], in basic arithmetic operations by 0.44 [0.14; 0.58], and in word problems by 0.47 [0.14; 0.61]. Other clinically relevant symptoms and disorders that might affect mathematical performance should also be taken into account in choosing suitable interventions. If such symptoms/disorders are present, it is important to differentiate whether they are functionally linked to dyscalculia (e.g., math anxiety) or not (e.g., ADHD). In all cases, any comorbid mental disorder must be considered in the design of a suitable treatment plan.

In persons with dyscalculia, mathematical abilities should be reinforced through the application of standardized, disorder-specific interventions whose efficacy has been scientifically demonstrated (eTable 2). These, however, should only be applied if they are appropriate in the context of the individual treatment plan. If the patient, for example, simultaneously suffers from an attention deficit that makes it impossible for him or her to follow a standardized program, then that program cannot be used.

Evaluated learning programs in German (names not translated)
Evaluated learning programs in German (names not translated)
eTable 2
Evaluated learning programs in German (names not translated)

Treatment should be provided only by specialized personnel who have received appropriate pedagogical-therapeutic training in the development of mathematical ability and its disorders, according to the standards established by the relevant specialty associations (the German Dyslexia and Dyscalculia Association [BVL] and the Association for Integrative Learning Therapy [FiL]), or who have undertaken a course of university study centering on learning therapy.

Treatment should be provided in individual sessions of at least 45 minutes’ duration. Treatment was found to have a weaker effect if provided in a group setting (−0.19 [−0.37; −0.01]) or in sessions lasting less than 45 minutes (−0.49 [−1.02; 0.04]).

Preschool children who are held to be at risk for developing dyscalculia should receive supportive treatment as early as possible, as this has been found to have a beneficial effect on the later development of mathematical competence and on scholastic performance (31, 32). The decision when to end treatment depends on the course of the response and on changing individual factors (e.g., the severity of comorbid symptoms). Treatment should thus be continued as long as it is appropriate and necessary in the judgment of the interdisciplinary team caring for the child (e.g., therapist, teacher, and physician). The indication for continued treatment should be reevaluated at least once a year, with disorder-specific follow-up examinations carried out by independent specialists (i.e. not the person conducting therapy) who have the relevant expertise.

Comorbid disorders in persons with dyscalculia

Dyscalculia has high comorbidity with other disorders and symptoms. The prevalences, odds ratios, and relative frequencies were determined in a meta-analysis (eTable 3). The most common comorbidities were found to be dyslexia, symptoms from the ADHD spectrum (mainly attention deficits), and symptoms of either the internalizing type (mainly math anxiety, test anxiety, and school phobia) or the externalizing type (e.g., aggressive behavior). Any individual who is given a diagnosis of dyscalculia should, therefore, undergo diagnostic screening for these potentially comorbid disorders. If a screening test yields the suspicion of a comorbid disorder, then a corresponding diagnostic work-up should be performed, preferably as specified in the relevant guideline (3337).

The need for action and further research

There is currently a lack of high-quality standardized tests and evidence-based learning programs for children and adolescents with dyscalculia from the fifth grade and up, and also, in particular, for adults. There is likewise a lack, for all age groups, of high-quality randomized controlled trials with multiple follow-up examinations that could inform us about the intermediate- and long-term effects of treatment. Research is also needed on the long-term course of dyscalculia onward into adulthood and on the development of comorbid disorders that interact with dyscalculia (above all, math anxiety and school phobia), which can be major impediments to scholastic achievement and to the success of treatment.

Action is needed, in particular, on the level of social policy, because dyscalculia persists through all age categories, with manifold negative consequences for its sufferers. At present, across Germany, pupils with dyscalculia are not given equal treatment to pupils with dyslexia. For example, supportive measures (e.g., deficit compensation) are available only at the primary-school level, or not at all. Moreover, if learning therapy is needed outside of school, the costs are not borne by the health-insurance carriers; this places a major financial burden on the affected families that can go on for years, often leading to inadequate support and treatment of the affected children and adolescents. Social policy in the areas of education and health thus faces the task of making evidence-based scholastic supportive treatment available to all who need it, and of providing financial support for the costs of treatment. These two aspects are explicitly stressed in the preamble to the guideline, reflecting the consensus of the groups that participated in its creation.

The practical application of the S3 guideline

With the issuance of this guideline on the diagnosis and treatment of dyscalculia, evidence- and consensus-based S3 guidelines are now available that cover the entire area of specific developmental disorders of scholastic skills (ICD F81). This guideline contains relevant information for children, adolescents, and adults suffering from dyscalculia and should be implemented in all areas of its diagnosis and treatment. To enable better implementation of the recommendations, the guideline also includes additional information on their application in school, in learning therapy, and in the treatment of adults with dyscalculia. It also includes case illustrations exemplifying the diagnostic process. Fact sheets on each test that indicate its parameters and the included subtests, as well as lecture slides detailing the contents of the guideline, are available for downloading on the AWMF website.

Conflict of interest statement
The authors state that they have no conflict of interest.

Manuscript submitted on 29 November 2018, revised version accepted on 4 December 2018.

Translated from the original German by Ethan Taub, M.D.

Corresponding author

Prof. Dr. med. Gerd Schulte-Körne

Klinik und Poliklinik für Kinder- und Jugendpsychiatrie,

Psychosomatik und Psychotherapie

Klinikum der Universität München

Nussbaumstr. 5a
D-80336 Munich, Germany
Gerd.Schulte-Koerne@med.uni-muenchen.de

Supplementary material
eReferences:
www.aerzteblatt-international.de/ref0719

eTables, eFigures and eBoxes:
www.aerzteblatt-international.de/19m0107

1.
Fischbach A, Schuchardt K, Brandenburg J, et al.: Prävalenz von Lernschwächen und Lernstörungen: Zur Bedeutung der Diagnosekriterien. Lern Lernstörungen 2013; 2: 65–76 CrossRef
2.
Moll K, Kunze S, Neuhoff N, Bruder J, Schulte-Körne G: Specific learning disorder: prevalence and gender differences. PLoS One 2014; 9: 1–8 CrossRef MEDLINE PubMed Central
3.
Statistisches Bundesamt (Destatis): Allgemeinbildende und berufliche Schulen: Schüler/innen nach Schularten. www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/BildungForschungKultur/Schulen/Tabellen/AllgemeinBildendeBeruflicheSchulenSchulartenSchueler.html (last accessed on 30 October 2018).
4.
Ritchie SJ, Bates TC: Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychol Sci 2013; 24: 1301–8 CrossRef MEDLINE
5.
Parsons S, Bynner J: Does numeracy matter more? London: National Research and Development Centre for Adult Literacy and Numeracy 2005.
6.
Gross J, Hudson C, Price D: The long term costs of numeracy difficulties. London: Every Child a Chance Trust 2009.
7.
Kaufmann L, von Aster M: The diagnosis and management of dyscalculia. Dtsch Arztebl Int 2012; 109: 767–78 CrossRef VOLLTEXT
8.
Butterworth B, Varm S, Laurillard D: Dyscalculia: from brain to education. Science 2011; 332: 1049–53 CrossRef MEDLINE
9.
Desoete A, Ceulemans A, de Weerdt F, Pieters S: Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study. Br J Educ Psychol 2012; 82: 64–81 CrossRef MEDLINE
10.
Geary DC, Hoard MK, Nugent L, Bailey DH: Mathematical cognition deficits in children with learning disabilities and persistent low achievement: a five-year prospective study. J Educ Psychol 2012; 104: 206–23 CrossRef MEDLINE PubMed Central
11.
Lewis KE, Fisher MB: Taking stock of 40 years of research on mathematical learning disability: methodological issues and future directions. J Res Math Educ 2016; 47: 338–71 CrossRef
12.
Schulte-Körne G: Mental health problems in a school setting in children and adolescents. Dtsch Arztebl Int 2016; 113: 183–90 CrossRef VOLLTEXT
13.
Kohn J, Wyschkon A, Esser G: Psychische Auffälligkeiten bei Umschriebenen Entwicklungsstörungen: Gibt es Unterschiede zwischen Lese-Rechtschreib- und Rechenstörungen? Lern Lernstörungen 2013; 2: 7–20 CrossRef
14.
Willcutt EG, Petrill SA, Wu S, et al.: Comorbidity between reading disability and math disability: concurrent psychopathology, functional impairment, and neuropsychological functioning. J Learn Disabil 2013; 46: 500–16 CrossRef MEDLINE PubMed Central
15.
Fischbach A, Schuchardt K, Mähler C, Hasselhorn M: Zeigen Kinder mit schulischen Minderleistungen sozio-emotionale Auffälligkeiten? Z Entwickl Padagogis 2010; 42: 201–10 CrossRef
16.
Gross-Tsur V, Manor O, Shalev RS: Developmental dyscalculia: prevalence and demographic features. Dev Med Child Neurol 1996; 38: 25–33 CrossRef MEDLINE
17.
Schuchardt K, Fischbach A, Balke-Melcher C, Mähler C: Die Komorbidität von Lernschwierigkeiten mit ADHS-Symptomen im Grundschulalter. Z Kinder Jug-Psych 2015; 43: 185–93 CrossRef MEDLINE
18.
Sälzer C, Heine JH: Students’ skipping behavior on truancy items and (school) subjects and its relation to test performance in PISA 2012. Int J Educ Dev 2016; 46: 103–13 CrossRef
19.
Kuhn JT: Developmental dyscalculia: neurobiological, cognitive, and developmental perspectives. Z Psychol 2015; 223: 69–82 CrossRef
20.
Ise E, Schulte-Körne G: Symptomatik, Diagnostik und Behandlung der Rechenstörung. Z Kinder Jug-Psych 2013; 41: 271–82 CrossRef MEDLINE
21.
Scottish Intercollegiate Guidelines Network: Critical appraisal notes and checklists. www.sign.ac.uk/checklists-and-notes.html (last accessed on 13 June 2018).
22.
Downes M, Brennan M, Williams H, Dean RS: Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open 2016; 6: 1–7 CrossRef MEDLINE PubMed Central
23.
OCEBM Levels of Evidence Working Group: The Oxford 2011 levels of evidence. www.cebm.net/index.aspx?o=5653 (last accessed on 13 June 2018).
24.
van Iterson L, de Jong PF, Zijlstra BJH: Pediatric epilepsy and comorbid reading disorders, math disorders, or autism spectrum disorders: impact of epilepsy on cognitive patterns. Epilepsy Behav 2015; 44: 159–68 CrossRef MEDLINE
25.
Murphy MM: A review of mathematical disabilities in children with fragile X snydrome. Dev Disabil Res Rev 2009; 15: 21–7 CrossRef MEDLINE
26.
de Smedt B, Swillen A, Verschaffel L, Ghesquiere P: Mathematical learning disabilities in children with 22q11.2 deletion syndrome: a review. Dev Disabil Res Rev 2009; 15: 4–10 CrossRef MEDLINE
27.
Taylor HG, Espy KA, Anderson PJ: Mathematics deficiencies in children with very low birth weight or very preterm birth. Dev Disabil Res Rev 2009; 15: 52–9 CrossRef MEDLINE
28.
Shalev RS, Manor O, Kerem B, et al.: Developmental dyscalculia is a familial learning disability. J Learn Disabil 2001; 34: 59–65 CrossRef MEDLINE
29.
Landerl K, Moll K: Comorbidity of learning disorders: prevalence and familial transmission. J Child Psychol Psychiatry 2010; 51: 287–94 CrossRef MEDLINE
30.
Stock P, Desoete A, Roeyers H: Detecting children with arithmetic disabilities from kindergarten: evidence from a 3-year longitudinal study on the role of preparatory arithmetic abilities. J Learn Disabil 2010; 43: 250–68 CrossRef MEDLINE
31.
Sella F, Tressoldi P, Lucangeli D, Zorzi M: Training numerical skills with the adaptive videogame „The Number Race“: a randomized controlled trial on preschoolers. Trends Neurosci Educ 2016; 5: 20–9 CrossRef
32.
Ennemoser M, Sinner D, Krajewski K: Kurz- und langfristige Effekte einer entwicklungsorientierten Mathematikförderung bei Erstklässlern mit drohender Rechenschwäche. Lern Lernstörungen 2015; 4: 43–59 CrossRef
33.
Galuschka K, Schulte-Körne G: Diagnostik und Förderung von Kindern und Jugendlichen mit Lese- und/oder Rechtschreibstörung. Dtsch Arztebl Int 2016; 113: 279–86 VOLLTEXT
34.
DGKJP: Behandlung von depressiven Störungen bei Kindern und Jugendlichen. www.awmf.org/uploads/tx_szleitlinien/028-043l_S3_Depressive_Störungen_bei_Kindern_Jugendlichen_2013-07-abgelaufen.pdf (last accessed on 13 June 2018).
35.
DGKJP: Behandlung von Angststörungen bei Kindern und Jugendlichen. www.awmf.org/leitlinien/detail/anmeldung/1/ll/028-022.html (last accessed on 13 June 2018).
36.
DGKJP, DGPPN, DGSPJ: ADHS im Kinder-, Jugend- und Erwachsenenalter. www.awmf.org/uploads/tx_szleitlinien/028-045l_S3_ADHS_2018-06.pdf (last accessed on 13 June 2018).
37.
Schulte-Körne G: The prevention, diagnosis, and treatment of dyslexia. Dtsch Arztebl Int 2010; 107: 718–27 CrossRef VOLLTEXT
e1.
Ashkenazi S, Mark-Zigdon N, Henik A: Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness? Dev Sci 2013; 16: 35–46 CrossRef MEDLINE
e2.
Censabella S, Noel MP: The inhibition capacities of children with mathematical disabilities. Child Neuropsychol 2008; 14: 1–20 MEDLINE
e3.
Ceulemans A, Titeca D, Loeys T, Hoppenbrouwers K, Rousseau S, Desoete A: Enumeration of small and large numerosities in adolescents with mathematical learning disorders. Res Dev Disabil 2014; 35: 27–35 CrossRef MEDLINE
e4.
Ghesquiere P, Torbeyns J, Verschaffel L: Strategy development in children with mathematical disabilities: insights from the choice/no-choice method and the chronological-age/ability-level-match design. J Learn Disabil 2004; 37: 119–31 CrossRef MEDLINE
e5.
Heine A, Wissmann J, Tamm S, et al.: An electrophysiological investigation of non-symbolic magnitude processing: numerical distance effects in children with and without mathematical learning disabilities. Cortex 2013; 49: 2162–77 CrossRef MEDLINE
e6.
Landerl K, Bevan A, Butterworth B: Developmental dyscalculia and basic numerical capacities: a study of 8–9-year-old students. Cognition 2004; 93: 99–125 CrossRef MEDLINE
e7.
Mejias S, Mussolin C, Rousselle L, Gregoire J, Noel MP: Numerical and nonnumerical estimation in children with and without mathematical learning disabilities. Child Neuropsychol 2012; 18: 550–75 CrossRef MEDLINE
e8.
Micallef S, Prior M: Arithmetic learning difficulties in children. Educ Psychol 2004; 24: 175–200 CrossRef
e9.
Mussolin C, Mejias S, Noel MP: Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition 2010; 115: 10–25 CrossRef MEDLINE
e10.
Powell SR, Fuchs LS, Fuchs D, Cirino PT, Fletcher JM: Do word-problem features differentially affect problem difficulty as a function of students’ mathematics difficulty with and without reading difficulty? J Learn Disabil 2009; 42: 99–110 CrossRef MEDLINE PubMed Central
e11.
Rosenberg-Lee M, Ashkenazi S, Chen T, Young CB, Geary DC, Menon V: Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia. Dev 2014; 18: 351–72.
e12.
Rousselle L, Noel MP: Mental arithmetic in children with mathematics learning disabilities: the adaptive use of approximate calculation in an addition verification task. J Learn Disabil 2008; 41: 498–513 CrossRef MEDLINE
e13.
Schuchardt K, Mähler C: Do subgroups of children with mathematical disabilities differ in their working memory, basic arithmetical knowledge, and numeric competences? Z Entwickl Padagogis 2010; 42: 217–25.
e14.
Swanson HL: Does cognitive strategy training on word problems compensate for working memory capacity in children with math difficulties? J Educ Psychol 2014; 106: 831–48 CrossRef
e15.
Swanson HL, Lussier CM, Orosco M: Effects of cognitive strategy interventions and cognitive moderators on word problem solving in children at risk for problem solving difficulties. Learn Disabil Res Pr 2013; 28: 170–83 CrossRef
e16.
Swanson HL, Lussier CM, Orosco MJ: Cognitive strategies, working memory, and growth in word problem solving in children with math difficulties. J Learn Disabil 2013; 48: 339–58 MEDLINE
e17.
Szucs D, Devine A, Soltesz F, Nobes A, Gabriel F: Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex 2013; 49: 2674–88 CrossRef MEDLINE PubMed Central
e18.
Wilson AJ, Andrewes SG, Struthers H, Rowe VM, Bogdanovic R, Waldie KE: Dyscalculia and dyslexia in adults: cognitive bases of comorbidity. Learn Individ Differ 2015; 37: 118–32 CrossRef
e19.
Schleifer P, Landerl K: Subitizing and counting in typical and atypical development. Dev 2011; 14: 280–91.
e20.
Compton DL, Fuchs LS, Fuchs D, Lambert W, Hamlett C: The cognitive and academic profiles of reading and mathematics learning disabilities. J Learn Disabil 2012; 45: 79–95 CrossRef MEDLINE PubMed Central
e21.
De Weerdt F, Desoete A, Roeyers H: Working memory in children with reading disabilities and/or mathematical disabilities. J Learn Disabil 2013; 46: 461–72 CrossRef MEDLINE
e22.
Geary DC, Hoard MK, Hamson CO: Numerical and arithmetical cognition: patterns of functions and deficits in children at risk for a mathematical disability. J Exp Child Psychol 1999; 74: 213–39 CrossRef MEDLINE
e23.
Koontz KL, Berch DB: Identifying simple numerical stimuli: processing inefficiencies exhibited by arithmetic learning disabled children. Math Cognit 1996; 2: 1–23 CrossRef
e24.
Peng P, Congying S, Beilei L, Sha T: Phonological storage and executive function deficits in children with mathematics difficulties. J Exp Child Psychol 2012; 112: 452–66 CrossRef MEDLINE
e25.
Schuchardt K, Mähler C, Hasselhorn M: Working memory deficits in children with specific learning disorders. J Learn Disabil 2008; 41: 514–23 CrossRef MEDLINE
e26.
Swanson HL: Cognitive profile of adolescents with math disabilities: are the profiles different from those with reading disabilities? Child Neuropsychol 2012; 18: 125–43 CrossRef MEDLINE
e27.
van Daal V, van der Leij A, Adèr H: Specificity and overlap in skills underpinning reading and arithmetical fluency. Read Writ 2013; 26: 1009–30 CrossRef
e28.
van der Sluis S, de Jong PF, van der Leij A: Working memory in Dutch children with reading- and arithmetic-related LD. J Learn Disabil 2005; 38: 207–21 CrossRef MEDLINE
e29.
Willburger E, Fussenegger B, Moll K, Wood G, Landerl K: Naming speed in dyslexia and dyscalculia. Learn Individ Differ 2008; 18: 224–36 CrossRef
e30.
Gold AB, Ewing-Cobbs L, Cirino PT, Fuchs LS, Stuebing KK, Fletcher JM: cognitive and behavioral attention in children with math difficulties. Child Neuropsychol 2013; 19: 420–37 CrossRef MEDLINE PubMed Central
e31.
van der Sluis S, de Jong PF, van der Leij A: Inhibition and shifting in children with learning deficits in arithmetic and reading. J Exp Child Psychol 2004; 87: 239–66 CrossRef MEDLINE
e32.
Wang LC, Tasi HJ, Yang HM: Cognitive inhibition in students with and without dyslexia and dyscalculia. Res Dev Disabil 2012; 33: 1453–61 CrossRef MEDLINE
e33.
Endlich D, Dummert F, Schneider W, Schwenck C: Verhaltensprobleme bei Kindern mit umschriebener und kombinierter schulischer Minderleistung. Kindh Entwickl 2014; 23: 61–9 CrossRef
e34.
Morsanyi K, Devine A, Nobes A, Szucs D: The link between logic, mathematics and imagination: evidence from children with developmental dyscalculia and mathematically gifted children. Dev 2013; 16: 542–53.
e35.
Bottge BA, Cho SJ: Effects of enhanced anchored instruction on CrossRef skills aligned to common core math standards. Learn Disabil 2013; 19: 73–83.
e36.
Burns MK, Kanive R, DeGrande M: Effect of a computer-delivered math fact intervention as a supplemental intervention for math in third and fourth grades. Rem Spec Educ 2012; 33: 184–91.
e37.
Ennemoser M, Krajewski K: Effekte der Förderung des Teil-Ganzes-Verständnisses bei Erstklässlern mit schwachen Mathematikleistungen. Vierteljahresschr Heilpadag Nachbargeb 2007; 76: 228–40.
e38.
Ennemoser M, Sinner D, Krajewski K: Kurz- und langfristige Effekte einer entwicklungsorientierten Mathematikförderung bei Erstklässlern mit drohender Rechenschwäche. Lern Lernstörungen 2015; 4: 43–59 CrossRef
e39.
Fuchs LS, Compton DL, Fuchs D, Paulsen K, Bryant JD, Hamlett CL: The prevention, identification, and cognitive determinants of math difficulty. J Educ Psychol 2005; 97: 493–513 CrossRef
e40.
Fuchs LS, Fuchs D, Hamlett CL, Appleton AC: Explicitly teaching for transfer: effects on the mathematical problem-solving performance of students with mathematics disabilities. Learn Disabil Res Pr 2002; 17: 90–106 CrossRef
e41.
Fuchs LS, Powell SR, Hamlett CL, Fuchs D, Cirino PT, Fletcher JM: Remediating computational deficits at third grade: a randomized field trial. J Res Educ Eff 2008; 1: 2–32 CrossRef MEDLINE PubMed Central
e42.
Fuchs LS, Powell SR, Seethaler PM, et al.: The effects of strategic counting instruction, with and without deliberate practice, on number combination skill among students with mathematics difficulties. Learn Individ Differ 2010; 20: 89–100 CrossRef MEDLINE PubMed Central
e43.
Fuchs LS, Powell SR, Seethaler PM, et al.: Remediating number combination and word problem deficits among students with mathematics difficulties: a randomized control trial. J Educ Psychol 2009; 101: 561–76 CrossRef MEDLINE PubMed Central
e44.
Hutchinson NL: Effects of cognitive strategy instruction on algebra problem solving of adolescents with learning disabilities. Learn Disability Q 1993; 16: 34–63 CrossRef
e45.
Jitendra AK, Dupuis DN, Rodriguez MC, et al.: A randomized controlled trial of the impact of schema-based instruction on mathematical outcomes for third-grade students with mathematics difficulties. Elem School J 2013; 114: 252–76 CrossRef
e46.
Kroesbergen EH, van Luit JEH: Teaching multiplication to low math performers: guided versus structured instruction. Instr Sci 2002; 30: 361–78 CrossRef
e47.
Lambert K, Spinath B: Do we need a special intervention program for children with mathematical learning disabilities or is private tutoring sufficient? J Educ Res Online 2014; 6: 68–93.
e48.
Moran AS, Swanson HL, Gerber MM, Fung W: The effects of paraphrasing interventions on problem-solving accuracy for children at risk for math disabilities. Learn Disabil Res Pr 2014; 29: 97–105 CrossRef
e49.
Powell SR, Driver MK, Julian TE: The effect of tutoring with nonstandard equations for students with mathematics difficulty. J Learn Disabil 2015; 48: 523–34 CrossRef MEDLINE
e50.
Powell SR, Fuchs LS: Contribution of equal-sign instruction beyond word-problem tutoring for third-grade students with mathematics difficulty. J Educ Psychol 2010; 102: 381–94 CrossRef MEDLINE PubMed Central
e51.
Powell SR, Fuchs LS, Fuchs D, Cirino PT, Fletcher JM: Effects of fact retrieval tutoring on third-grade students with math difficulties with and without reading difficulties. Learn Disabil Res Pr 2009; 24: 1–11 CrossRef MEDLINE PubMed Central
e52.
Re AM, Pedron M, Tressoldi PE, Lucangeli D: Response to specific training for students with different levels of mathematical difficulties. Except Children 2014; 80: 337–52 CrossRef
e53.
Sinner D, Kuhl J: Förderung mathematischer Basiskompetenzen in der Grundstufe der Schule für Lernhilfe. Z Entwickl Padagogis 2010; 42: 241–51.
e54.
Swanson HL: Cognitive strategy interventions improve word problem solving and working memory in children with math disabilities. Front Psychol 2015; 6: 1–13 MEDLINE PubMed Central
e55.
Swanson HL, Moran AS, Lussier C, Fung W: The effect of explicit and direct generative strategy training and working memory on word problem-solving accuracy in children at risk for math difficulties. Learn Disability Q 2014; 37: 111–22 CrossRef
e56.
Tournaki N: The differential effects of teaching addition through strategy instruction versus drill and practice to students with and without learning disabilities. J Learn Disabil 2003; 36: 449–58 CrossRef MEDLINE
e57.
van Luit JEH, Schopman EAM: Improving early numeracy of young children with special educational needs. Rem Spec Educ 2000; 21: 27–40 CrossRef
e58.
Wißmann J, Heine A, Handl P, Jacobs AM: Förderung von Kindern mit isolierter Rechenschwäche und kombinierter Rechen- und Leseschwäche: Evaluation eines numerischen Förderprogramms für Grundschüler. Lern Lernstörungen 2013; 2: 91–109 CrossRef
e59.
Kuhn JT: Meister CODY: Computerbasiertes Trainingsprogramm für Grundschulkinder mit Rechenschwierigkeiten. Beitrag auf dem 6. Frankfurter Forum 2016. Frankfurt am Main 2016.
e60.
Fortes IS, Paula CS, Oliveira MC, Bordin IA, de Jesus Mari J, Rohde LA: A cross-sectional study to assess the prevalence of DSM-5 specific learning disorders in representative school samples from the second to sixth grade in Brazil. Eur Child Adoles Psy 2016; 25: 195–207 CrossRef MEDLINE
e61.
Gross-Tsur V, Manor O, Shalev RS: Developmental dyscalculia: prevalence and demographic features. Dev Med Child Neurol 1996; 38: 25–33 MEDLINE
e62.
Schuchardt K, Fischbach A, Balke-Melcher C, Mähler C: Die Komorbidität von Lernschwierigkeiten mit ADHS-Symptomen im Grundschulalter. Z Kinder Jug-Psych 2015; 43: 185–93 CrossRef MEDLINE
e63.
Willcutt EG, Petrill SA, Wu S, et al.: Comorbidity between reading disability and math disability: concurrent psychopathology, functional impairment, and neuropsychological functioning. J Learn Disabil 2013; 46: 500–16 CrossRef MEDLINE PubMed Central
e64.
Shalev RS, Auerbach J, Manor O, Gross-Tsur V: Developmental dyscalculia: prevalence and prognosis. Eur Child Adolesc Psychiatry 2000; 9: 58–64 CrossRef
e65.
Fischbach A, Schuchardt K, Mähler C, Hasselhorn M: Zeigen Kinder mit schulischen Minderleistungen sozio-emotionale Auffälligkeiten? Z Entwickl Padagogis 2010; 42: 201–10.
e66.
Barbaresi WJ, Katusic SK, Colligan RC, Weaver AL, Jacobsen SJ: Math learning disorder: incidence in a population-based birth cohort, 1976–82, Rochester, Minn. Ambul Pediatr 2005; 5: 281–9 CrossRef MEDLINE
e67.
Daseking M, Petermann F, Simon K, Waldmann HC: Vorhersage von schulischen Lernstörungen durch SOPESS. Gesundheitswesen 2011; 73: 650–9 CrossRef MEDLINE
e68.
Fischbach A, Schuchardt K, Brandenburg J, et al.: Prävalenz von Lernschwächen und Lernstörungen: Zur Bedeutung der Diagnosekriterien. Lern Lernstörungen 2013; 2: 65–76 CrossRef
e69.
Landerl K, Moll K: Comorbidity of learning disorders: prevalence and familial transmission. J Child Psychol Psyc 2010; 51: 287–94 CrossRef MEDLINE
e70.
Moll K, Kunze S, Neuhoff N, Bruder J, Schulte-Körne G: Specific learning disorder: prevalence and gender differences. PLoS One 2014; 9: 1–8.
e71.
Ramaa S, Gowramma IP: A systematic procedure for identifying and classifying children with dyscalculia among primary school children in India. Dyslexia (Chichester, England) 2002; 8: 67–85 CrossRef MEDLINE
e72.
Shalev RS, Manor O, Auerbach J, Gross-Tsur V: Persistence of developmental dyscalculia: what counts? Results from a 3-year prospective follow-up study. J Pediatr 1998; 133: 358–62 MEDLINE
e73.
Badian NA: Persistent arithmetic, reading, or arithmetic and reading disability. Ann Dyslexia 1999; 49: 45–70.
e74.
Cirino PT, Fuchs LS, Elias JT, Powell SR, Schumacher RF: Cognitive and mathematical profiles for different forms of learning difficulties. J Learn Disabil 2015; 48: 156–75 CrossRef MEDLINE PubMed Central
e75.
Dirks E, Spyer G, van Lieshout ECDM, de Sonneville L: Prevalence of combined reading and arithmetic disabilities. J Learn Disabil 2008; 41: 460–73 CrossRef MEDLINE
e76.
Jitendra AK, Dupuis DN, Star JR, Rodriguez MC: The effects of schema-based instruction on the proportional thinking of students with mathematics difficulties with and without reading difficulties. J Learn Disabil 2016; 49: 354–67 CrossRef MEDLINE
e77.
Lewis C, Hitch GJ, Walker P: The prevalence of specific arithmetic difficulties and specific reading difficulties in 9– to 10-year old boys and girls. J Child Psychol Psyc 1994; 35: 283–92 CrossRef
e78.
Peake C, Jiménez JE, Rodríguez C, Bisschop E, Villarroel R: Syntactic awareness and arithmetic word problem solving in children with and without learning disabilities. J Learn Disabil 2015; 48: 593–601 CrossRef MEDLINE
e79.
Shalev RS, Manor O, Gross-Tsur V: Developmental dyscalculia: a prospective six-year follow-up. Dev Med Child Neurol 2005; 47: 121–25 CrossRef
e80.
von Aster M, Schweiter M, Weinhold Zulauf M: Rechenstörungen bei Kindern. Vorläufer, Prävalenz und psychische Symptome. Z Entwickl Padagogis 2007; 39: 85–96.
e81.
Kuhn JT, Schwenk C, Raddatz J, Dobel C, Holling H: CODY-Mathetest: Mathematiktest für die 2.-4. Klasse (CODY-M 2–4). Düsseldorf: Kaasa health 2017.
e82.
Ennemoser M, Krajewski K, Sinner D: Test mathematischer Basiskompetenzen ab Schuleintritt (MBK 1+). Göttingen: Hogrefe 2017.
e83.
Merdian G, Merdian F, Schardt K: Bamberger Dyskalkuliediagnostik 1–4+ (R) (BADYS 1–4+). Bamberg: PaePsy 2015.
e84.
Gölitz D, Roick T, Hasselhorn M: Deutscher Mathematiktest für vierte Klassen (DEMAT 4). Göttingen: Hogrefe 2006.
e85.
Holzer N, Schaupp H, Lenart F: Eggenberger Rechentest 3+ (ERT 3+). Göttingen: Hogrefe 2010.
e86.
Krajewski K, Küspert P, Schneider W: Deutscher Mathematiktest für erste Klassen (DEMAT 1+). Göttingen: Hogrefe 2002.
e87.
Götz L, Lingel K, Schneider W: Deutscher Mathematiktest für sechste Klassen (DEMAT 6+). Göttingen: Hogrefe 2013.
e88.
Götz L, Lingel K, Schneider W: Deutscher Mathematiktest für fünfte Klassen (DEMAT 5+). Göttingen: Hogrefe 2013.
e89.
Lenart F, Holzer N, Schaupp H: Eggenberger Rechentest 2+ (ERT 2+). Göttingen: Hogrefe 2003.
e90.
Krajewski K, Liehm S, Schneider W: Deutscher Mathematiktest für zweite Klassen (DEMAT 2+). Göttingen: Hogrefe 2004.
e91.
Schaupp H, Lenart F, Holzer N: Eggenberger Rechentest 4+ (ERT 4+). Göttingen: Hogrefe 2010.
e92.
Merdian G, Merdian F, Schardt K: Bamberger Dyskalkuliediagnostik 5–8+ (BADYS 5–8+). Bamberg: PaePsy 2012.
e93.
Roick T, Gölitz D, Hasselhorn M: Deutscher Mathematiktest für dritte Klassen (DEMAT 3+). Göttingen: Hogrefe 2004.
e94.
Haffner J, Baro K, Parzer P, Resch F: Heidelberger Rechentest (HRT 1–4). Göttingen: Hogrefe 2005.
e95.
Schipper W, Wartha S, von Schroeders N: Bielefelder Rechentest für das zweite Schuljahr (BIRTE 2). Braunschweig: Schroedel 2011.
e96.
Schaupp H, Holzer N, Lenart F: Eggenberger Rechentest 1+ (ERT 1+). Göttingen: Hogrefe 2003.
e97.
Kaufmann L, Nuerk HC, Graf M, Krinzinger H, Delazer M, Willmes K: Test zur Erfassung numerisch-rechnerischer Fertigkeiten vom Kindergarten bis zur 3. Klasse (TEDI-MATH). Bern: Hogrefe 2009.
e98.
May P, Bennöhr J: Kompetenzerfassung in Kindergarten und Schule (KEKS). Berlin: Cornelsen 2013.
e99.
Grube D, Weberschock U, Blum M, Hasselhorn M: Diagnostisches Inventar zu Rechenfertigkeiten im Grundschulalter (DIRG). Göttingen: Hogrefe 2010.
e100.
Fritz A, Ehlert A, Ricken G, Balzer L: Mathematik- und Rechenkonzepte bei Kindern der erste Klassenstufe – Diagnose (MARKO-D1+). Göttingen: Hogrefe 2017.
e101.
von Aster M, Weinhold-Zulauf M, Horn R: Neuropsychologische Testbatterie für Zahlenverarbeitung und Rechnen bei Kindern (ZAREKI-R). Frankfurt am Main: Pearson Assessment & Information 2006.
e102.
Schroeders U, Schneider W: Test zur Diagnose von Dyskalkulie (TeDDy-PC). Göttingen: Hogrefe 2008.
e103.
Schmidt S, Ennemoser M, Krajewski K: Deutscher Mathematiktest für neunte Klassen (DEMAT 9). Göttingen: Hogrefe 2013.
e104.
Strathmann AM, Klauer KJ: Lernverlaufsdiagnostik – Mathematik für zweite bis vierte Klassen (LVD-M 2–4). Göttingen: Hogrefe 2012.
e105.
Jacobs C, Petermann F: Rechenfertigkeiten- und Zahlenverarbeitungs-Diagnostikum für die 2. bis 6. Klasse (RZD 2–6). Göttingen: Hogrefe 2005.
e106.
Lenhard W, Hasselhorn M, Schneider W: Kombiniertes Leistungsinventar zur allgemeinen Schulleistung und für Schullaufbahnempfehlungen in der vierten Klasse (KLASSE 4). Göttingen: Hogrefe 2011.
e107.
Holzer N, Lenart F, Schaupp H: Eggenberger Rechentest für Jugendliche und Erwachsene (ERT JE). Bern: Hogrefe 2017.
e108.
Moog W, Schulz A: Zahlen begreifen: Diagnose und Förderung bei Kindern mit Rechenschwäche. Weihheim und Basel: Beltz 2005.
e109.
Dybuster AG: Dybuster Calcularis. Zürich: Dybuster AG 2007.
e110.
Gerlach M, Fritz A, Leutner D: MARKO-T. Göttingen: Hogrefe 2013.
e111.
Kaasa health: Meister Cody – Talasia. Düsseldorf: Kaasa health 2013.
e112.
Krajewski K, Nieding G, Schneider W: Mengen, zählen, Zahlen. Göttingen: Hogrefe 2013.
e113.
Lenhard W, Lenhard A: Rechenspiele mit Elfe und Mathis I. Göttingen: Hogrefe 2009.
e114.
Schlotmann A: Warum Kinder an Mathe scheitern. Hirschberg an der Bergstraße: Supperverlag 2007.
e115.
Flierl U, Francich W, Wagenhäuser R: ALFONS Lernwelt Mathematik 1. Braunschweig: Schroedel 2009.
e116.
Flierl U, Francich W, Wagenhäuser R: ALFONS Lernwelt Mathematik 2. Braunschweig: Schroedel 2009.
e117.
Wittmann EC, Müller GN: Das Zahlenbuch 1. Stuttgart, Leipzig: Klett 2012.
e118.
Rademacher J, Lehmann W, Quaiser-Pohl C, Günther A, Trautewig N: Mathematik im Vorschulalter. Göttingen: Vandenhoeck & Ruprecht 2009.
e119.
Schoppek W: Merlins Rechenmühle. Bayreuth: Universität Bayreuth 2010.
e120.
Fritz A, Gerlach M: Mina und der Maulwurf. Berlin: Cornelsen 2011.
e121.
Mammarella IC, Hill F, Devine A, Caviola S, Szűcs D: Math anxiety and developmental dyscalculia: a study on working memory processes. J Clin Exp Neuropsyc 2015; 37: 878–87 CrossRef MEDLINE
e122.
Moll K, Göbel SM, Snowling MJ: Basic number processing in children with specific learning disorders: comorbidity of reading and mathematics disorders. Child Neuropsychol 2015; 21: 399–417 CrossRef MEDLINE
e123.
Donker M, Kroesbergen EH, Slot E, van Viersen S, de Bree E: Alphanumeric and non-alphanumeric rapid automatized naming in children with reading and/or spelling difficulties and mathematical difficulties. Learn Individ Differ 2016; 47: 80–7 CrossRef
e124.
Maehler C, Schuchardt K: Working memory in children with specific learning disorders and/or attention deficits. Learn Individ Differ 2016; 49: 341–7 CrossRef
e125.
Raddatz J, Kuhn JT, Holling H, Moll K, Dobel C: Comorbidity of arithmetic and reading disorder. J Learn Disabil 2017; 50: 298–308 MEDLINE
e126.
Karakonstantaki ES, Simos PG, Michalis V, Micheloyannis S: Assessment and conceptual remediation of basic calculation skills in elementary school students. Brit J Dev Psychol 2018; 36: 78–97 CrossRef MEDLINE
e127.
Lambert K, Spinath B: Conservation abilities, visuospatial skills, and numerosity processing speed: association with math achievement and math difficulties in elementary school children. J Learn Disabil 2018; 51: 223–35 CrossRef MEDLINE
e128.
Mammarella IC, Caviola S, Giofrè D, Szűcs D: The underlying structure of visuospatial working memory in children with mathematical learning disability. Brit J Dev Psychol 2018; 36: 220–35 CrossRef MEDLINE
e129.
McDonald PA, Berg DH: Identifying the nature of impairments in executive functioning and working memory of children with severe difficulties in arithmetic. Child Neuropsychol 2018; 24: 1047–62 CrossRef MEDLINE
e130.
Morsanyi K, van Bers BMCW, O‘Connor PA, McCormack T: Developmental dyscalculia is characterized by order processing deficits: evidence from numerical and non-numerical ordering tasks. Dev Neuropsychol 2018; 43: 595–621 CrossRef MEDLINE
e131.
Koponen TK, Sorvo R, Dowker A, et al.: Does multi-component strategy training improve calculation fluency among poor performing elementary school children? Front Psychol 2018; 9: 1–14.
e132.
Kohn J, Rauscher L, Käser T, et al.: Effekte des „Calcularis“-Trainings. Teil 1: Domänen-spezifische Veränderungen. Lern Lernstörungen 2017; 6: 51–63 CrossRef
e133.
Morsanyi K, van Bers BMCW, McCormack T, McGourty J: The prevalence of specific learning disorder in mathematics and comorbidity with other developmental disorders in primary school-age children. Brit J Psychol 2018; 109: 917–40 CrossRef MEDLINE
e134.
Devine A, Hill F, Carey E, Szűcs D: Cognitive and emotional math problems largely dissociate: prevalence of developmental dyscalculia and mathematics anxiety. J Educ Psychol 2018; 110: 431–44 CrossRef
e135.
Moll K, Landerl K, Snowling MJ, Schulte-Körne G: Understanding comorbidity of learning disorders: task-dependent estimates of prevalence. J Child Psychol Psychiatry 2018; doi: 10.1111/jcpp.12965 (Epub ahead of print) CrossRef
Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, LMU Munich: Mag. rer. nat. Stefan Haberstroh,
Prof. Dr. med. Gerd Schulte-Körne
Typical features of dyscalculia
Typical features of dyscalculia
Box
Typical features of dyscalculia
Algorithm for the diagnosis of dyscalculia
Algorithm for the diagnosis of dyscalculia
Figure
Algorithm for the diagnosis of dyscalculia
Key messages
Meta-analysis: persons with vs. persons without dyscalculia (the analysis shows positive effect sizes favoring persons without dyscalculia)
Meta-analysis: persons with vs. persons without dyscalculia (the analysis shows positive effect sizes favoring persons without dyscalculia)
Table 1
Meta-analysis: persons with vs. persons without dyscalculia (the analysis shows positive effect sizes favoring persons without dyscalculia)
Recommended psychometric tests of mathematical performance (in alphabetical order)*
Recommended psychometric tests of mathematical performance (in alphabetical order)*
Table 2
Recommended psychometric tests of mathematical performance (in alphabetical order)*
Participating organizations (voting representant*)
Participating organizations (voting representant*)
eBox 1
Participating organizations (voting representant*)
Flow chart of the literature search
Flow chart of the literature search
eFigure 2
Flow chart of the literature search
Evaluated learning programs in German (names not translated)
Evaluated learning programs in German (names not translated)
eTable 2
Evaluated learning programs in German (names not translated)
1. Fischbach A, Schuchardt K, Brandenburg J, et al.: Prävalenz von Lernschwächen und Lernstörungen: Zur Bedeutung der Diagnosekriterien. Lern Lernstörungen 2013; 2: 65–76 CrossRef
2. Moll K, Kunze S, Neuhoff N, Bruder J, Schulte-Körne G: Specific learning disorder: prevalence and gender differences. PLoS One 2014; 9: 1–8 CrossRef MEDLINE PubMed Central
3. Statistisches Bundesamt (Destatis): Allgemeinbildende und berufliche Schulen: Schüler/innen nach Schularten. www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/BildungForschungKultur/Schulen/Tabellen/AllgemeinBildendeBeruflicheSchulenSchulartenSchueler.html (last accessed on 30 October 2018).
4. Ritchie SJ, Bates TC: Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychol Sci 2013; 24: 1301–8 CrossRef MEDLINE
5. Parsons S, Bynner J: Does numeracy matter more? London: National Research and Development Centre for Adult Literacy and Numeracy 2005.
6. Gross J, Hudson C, Price D: The long term costs of numeracy difficulties. London: Every Child a Chance Trust 2009.
7. Kaufmann L, von Aster M: The diagnosis and management of dyscalculia. Dtsch Arztebl Int 2012; 109: 767–78 CrossRef VOLLTEXT
8. Butterworth B, Varm S, Laurillard D: Dyscalculia: from brain to education. Science 2011; 332: 1049–53 CrossRef MEDLINE
9. Desoete A, Ceulemans A, de Weerdt F, Pieters S: Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study. Br J Educ Psychol 2012; 82: 64–81 CrossRef MEDLINE
10. Geary DC, Hoard MK, Nugent L, Bailey DH: Mathematical cognition deficits in children with learning disabilities and persistent low achievement: a five-year prospective study. J Educ Psychol 2012; 104: 206–23 CrossRef MEDLINE PubMed Central
11. Lewis KE, Fisher MB: Taking stock of 40 years of research on mathematical learning disability: methodological issues and future directions. J Res Math Educ 2016; 47: 338–71 CrossRef
12. Schulte-Körne G: Mental health problems in a school setting in children and adolescents. Dtsch Arztebl Int 2016; 113: 183–90 CrossRef VOLLTEXT
13. Kohn J, Wyschkon A, Esser G: Psychische Auffälligkeiten bei Umschriebenen Entwicklungsstörungen: Gibt es Unterschiede zwischen Lese-Rechtschreib- und Rechenstörungen? Lern Lernstörungen 2013; 2: 7–20 CrossRef
14. Willcutt EG, Petrill SA, Wu S, et al.: Comorbidity between reading disability and math disability: concurrent psychopathology, functional impairment, and neuropsychological functioning. J Learn Disabil 2013; 46: 500–16 CrossRef MEDLINE PubMed Central
15. Fischbach A, Schuchardt K, Mähler C, Hasselhorn M: Zeigen Kinder mit schulischen Minderleistungen sozio-emotionale Auffälligkeiten? Z Entwickl Padagogis 2010; 42: 201–10 CrossRef
16. Gross-Tsur V, Manor O, Shalev RS: Developmental dyscalculia: prevalence and demographic features. Dev Med Child Neurol 1996; 38: 25–33 CrossRef MEDLINE
17. Schuchardt K, Fischbach A, Balke-Melcher C, Mähler C: Die Komorbidität von Lernschwierigkeiten mit ADHS-Symptomen im Grundschulalter. Z Kinder Jug-Psych 2015; 43: 185–93 CrossRef MEDLINE
18. Sälzer C, Heine JH: Students’ skipping behavior on truancy items and (school) subjects and its relation to test performance in PISA 2012. Int J Educ Dev 2016; 46: 103–13 CrossRef
19. Kuhn JT: Developmental dyscalculia: neurobiological, cognitive, and developmental perspectives. Z Psychol 2015; 223: 69–82 CrossRef
20. Ise E, Schulte-Körne G: Symptomatik, Diagnostik und Behandlung der Rechenstörung. Z Kinder Jug-Psych 2013; 41: 271–82 CrossRef MEDLINE
21. Scottish Intercollegiate Guidelines Network: Critical appraisal notes and checklists. www.sign.ac.uk/checklists-and-notes.html (last accessed on 13 June 2018).
22. Downes M, Brennan M, Williams H, Dean RS: Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open 2016; 6: 1–7 CrossRef MEDLINE PubMed Central
23. OCEBM Levels of Evidence Working Group: The Oxford 2011 levels of evidence. www.cebm.net/index.aspx?o=5653 (last accessed on 13 June 2018).
24. van Iterson L, de Jong PF, Zijlstra BJH: Pediatric epilepsy and comorbid reading disorders, math disorders, or autism spectrum disorders: impact of epilepsy on cognitive patterns. Epilepsy Behav 2015; 44: 159–68 CrossRef MEDLINE
25. Murphy MM: A review of mathematical disabilities in children with fragile X snydrome. Dev Disabil Res Rev 2009; 15: 21–7 CrossRef MEDLINE
26. de Smedt B, Swillen A, Verschaffel L, Ghesquiere P: Mathematical learning disabilities in children with 22q11.2 deletion syndrome: a review. Dev Disabil Res Rev 2009; 15: 4–10 CrossRef MEDLINE
27. Taylor HG, Espy KA, Anderson PJ: Mathematics deficiencies in children with very low birth weight or very preterm birth. Dev Disabil Res Rev 2009; 15: 52–9 CrossRef MEDLINE
28. Shalev RS, Manor O, Kerem B, et al.: Developmental dyscalculia is a familial learning disability. J Learn Disabil 2001; 34: 59–65 CrossRef MEDLINE
29. Landerl K, Moll K: Comorbidity of learning disorders: prevalence and familial transmission. J Child Psychol Psychiatry 2010; 51: 287–94 CrossRef MEDLINE
30. Stock P, Desoete A, Roeyers H: Detecting children with arithmetic disabilities from kindergarten: evidence from a 3-year longitudinal study on the role of preparatory arithmetic abilities. J Learn Disabil 2010; 43: 250–68 CrossRef MEDLINE
31. Sella F, Tressoldi P, Lucangeli D, Zorzi M: Training numerical skills with the adaptive videogame „The Number Race“: a randomized controlled trial on preschoolers. Trends Neurosci Educ 2016; 5: 20–9 CrossRef
32. Ennemoser M, Sinner D, Krajewski K: Kurz- und langfristige Effekte einer entwicklungsorientierten Mathematikförderung bei Erstklässlern mit drohender Rechenschwäche. Lern Lernstörungen 2015; 4: 43–59 CrossRef
33. Galuschka K, Schulte-Körne G: Diagnostik und Förderung von Kindern und Jugendlichen mit Lese- und/oder Rechtschreibstörung. Dtsch Arztebl Int 2016; 113: 279–86 VOLLTEXT
34. DGKJP: Behandlung von depressiven Störungen bei Kindern und Jugendlichen. www.awmf.org/uploads/tx_szleitlinien/028-043l_S3_Depressive_Störungen_bei_Kindern_Jugendlichen_2013-07-abgelaufen.pdf (last accessed on 13 June 2018).
35. DGKJP: Behandlung von Angststörungen bei Kindern und Jugendlichen. www.awmf.org/leitlinien/detail/anmeldung/1/ll/028-022.html (last accessed on 13 June 2018).
36. DGKJP, DGPPN, DGSPJ: ADHS im Kinder-, Jugend- und Erwachsenenalter. www.awmf.org/uploads/tx_szleitlinien/028-045l_S3_ADHS_2018-06.pdf (last accessed on 13 June 2018).
37. Schulte-Körne G: The prevention, diagnosis, and treatment of dyslexia. Dtsch Arztebl Int 2010; 107: 718–27 CrossRef VOLLTEXT
e1. Ashkenazi S, Mark-Zigdon N, Henik A: Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness? Dev Sci 2013; 16: 35–46 CrossRef MEDLINE
e2. Censabella S, Noel MP: The inhibition capacities of children with mathematical disabilities. Child Neuropsychol 2008; 14: 1–20 MEDLINE
e3. Ceulemans A, Titeca D, Loeys T, Hoppenbrouwers K, Rousseau S, Desoete A: Enumeration of small and large numerosities in adolescents with mathematical learning disorders. Res Dev Disabil 2014; 35: 27–35 CrossRef MEDLINE
e4. Ghesquiere P, Torbeyns J, Verschaffel L: Strategy development in children with mathematical disabilities: insights from the choice/no-choice method and the chronological-age/ability-level-match design. J Learn Disabil 2004; 37: 119–31 CrossRef MEDLINE
e5. Heine A, Wissmann J, Tamm S, et al.: An electrophysiological investigation of non-symbolic magnitude processing: numerical distance effects in children with and without mathematical learning disabilities. Cortex 2013; 49: 2162–77 CrossRef MEDLINE
e6. Landerl K, Bevan A, Butterworth B: Developmental dyscalculia and basic numerical capacities: a study of 8–9-year-old students. Cognition 2004; 93: 99–125 CrossRef MEDLINE
e7. Mejias S, Mussolin C, Rousselle L, Gregoire J, Noel MP: Numerical and nonnumerical estimation in children with and without mathematical learning disabilities. Child Neuropsychol 2012; 18: 550–75 CrossRef MEDLINE
e8. Micallef S, Prior M: Arithmetic learning difficulties in children. Educ Psychol 2004; 24: 175–200 CrossRef
e9. Mussolin C, Mejias S, Noel MP: Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition 2010; 115: 10–25 CrossRef MEDLINE
e10. Powell SR, Fuchs LS, Fuchs D, Cirino PT, Fletcher JM: Do word-problem features differentially affect problem difficulty as a function of students’ mathematics difficulty with and without reading difficulty? J Learn Disabil 2009; 42: 99–110 CrossRef MEDLINE PubMed Central
e11. Rosenberg-Lee M, Ashkenazi S, Chen T, Young CB, Geary DC, Menon V: Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia. Dev 2014; 18: 351–72.
e12. Rousselle L, Noel MP: Mental arithmetic in children with mathematics learning disabilities: the adaptive use of approximate calculation in an addition verification task. J Learn Disabil 2008; 41: 498–513 CrossRef MEDLINE
e13. Schuchardt K, Mähler C: Do subgroups of children with mathematical disabilities differ in their working memory, basic arithmetical knowledge, and numeric competences? Z Entwickl Padagogis 2010; 42: 217–25.
e14. Swanson HL: Does cognitive strategy training on word problems compensate for working memory capacity in children with math difficulties? J Educ Psychol 2014; 106: 831–48 CrossRef
e15. Swanson HL, Lussier CM, Orosco M: Effects of cognitive strategy interventions and cognitive moderators on word problem solving in children at risk for problem solving difficulties. Learn Disabil Res Pr 2013; 28: 170–83 CrossRef
e16. Swanson HL, Lussier CM, Orosco MJ: Cognitive strategies, working memory, and growth in word problem solving in children with math difficulties. J Learn Disabil 2013; 48: 339–58 MEDLINE
e17. Szucs D, Devine A, Soltesz F, Nobes A, Gabriel F: Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex 2013; 49: 2674–88 CrossRef MEDLINE PubMed Central
e18. Wilson AJ, Andrewes SG, Struthers H, Rowe VM, Bogdanovic R, Waldie KE: Dyscalculia and dyslexia in adults: cognitive bases of comorbidity. Learn Individ Differ 2015; 37: 118–32 CrossRef
e19. Schleifer P, Landerl K: Subitizing and counting in typical and atypical development. Dev 2011; 14: 280–91.
e20. Compton DL, Fuchs LS, Fuchs D, Lambert W, Hamlett C: The cognitive and academic profiles of reading and mathematics learning disabilities. J Learn Disabil 2012; 45: 79–95 CrossRef MEDLINE PubMed Central
e21. De Weerdt F, Desoete A, Roeyers H: Working memory in children with reading disabilities and/or mathematical disabilities. J Learn Disabil 2013; 46: 461–72 CrossRef MEDLINE
e22. Geary DC, Hoard MK, Hamson CO: Numerical and arithmetical cognition: patterns of functions and deficits in children at risk for a mathematical disability. J Exp Child Psychol 1999; 74: 213–39 CrossRef MEDLINE
e23. Koontz KL, Berch DB: Identifying simple numerical stimuli: processing inefficiencies exhibited by arithmetic learning disabled children. Math Cognit 1996; 2: 1–23 CrossRef
e24. Peng P, Congying S, Beilei L, Sha T: Phonological storage and executive function deficits in children with mathematics difficulties. J Exp Child Psychol 2012; 112: 452–66 CrossRef MEDLINE
e25. Schuchardt K, Mähler C, Hasselhorn M: Working memory deficits in children with specific learning disorders. J Learn Disabil 2008; 41: 514–23 CrossRef MEDLINE
e26. Swanson HL: Cognitive profile of adolescents with math disabilities: are the profiles different from those with reading disabilities? Child Neuropsychol 2012; 18: 125–43 CrossRef MEDLINE
e27. van Daal V, van der Leij A, Adèr H: Specificity and overlap in skills underpinning reading and arithmetical fluency. Read Writ 2013; 26: 1009–30 CrossRef
e28. van der Sluis S, de Jong PF, van der Leij A: Working memory in Dutch children with reading- and arithmetic-related LD. J Learn Disabil 2005; 38: 207–21 CrossRef MEDLINE
e29. Willburger E, Fussenegger B, Moll K, Wood G, Landerl K: Naming speed in dyslexia and dyscalculia. Learn Individ Differ 2008; 18: 224–36 CrossRef
e30. Gold AB, Ewing-Cobbs L, Cirino PT, Fuchs LS, Stuebing KK, Fletcher JM: cognitive and behavioral attention in children with math difficulties. Child Neuropsychol 2013; 19: 420–37 CrossRef MEDLINE PubMed Central
e31. van der Sluis S, de Jong PF, van der Leij A: Inhibition and shifting in children with learning deficits in arithmetic and reading. J Exp Child Psychol 2004; 87: 239–66 CrossRef MEDLINE
e32. Wang LC, Tasi HJ, Yang HM: Cognitive inhibition in students with and without dyslexia and dyscalculia. Res Dev Disabil 2012; 33: 1453–61 CrossRef MEDLINE
e33. Endlich D, Dummert F, Schneider W, Schwenck C: Verhaltensprobleme bei Kindern mit umschriebener und kombinierter schulischer Minderleistung. Kindh Entwickl 2014; 23: 61–9 CrossRef
e34. Morsanyi K, Devine A, Nobes A, Szucs D: The link between logic, mathematics and imagination: evidence from children with developmental dyscalculia and mathematically gifted children. Dev 2013; 16: 542–53.
e35. Bottge BA, Cho SJ: Effects of enhanced anchored instruction on CrossRef skills aligned to common core math standards. Learn Disabil 2013; 19: 73–83.
e36. Burns MK, Kanive R, DeGrande M: Effect of a computer-delivered math fact intervention as a supplemental intervention for math in third and fourth grades. Rem Spec Educ 2012; 33: 184–91.
e37. Ennemoser M, Krajewski K: Effekte der Förderung des Teil-Ganzes-Verständnisses bei Erstklässlern mit schwachen Mathematikleistungen. Vierteljahresschr Heilpadag Nachbargeb 2007; 76: 228–40.
e38. Ennemoser M, Sinner D, Krajewski K: Kurz- und langfristige Effekte einer entwicklungsorientierten Mathematikförderung bei Erstklässlern mit drohender Rechenschwäche. Lern Lernstörungen 2015; 4: 43–59 CrossRef
e39. Fuchs LS, Compton DL, Fuchs D, Paulsen K, Bryant JD, Hamlett CL: The prevention, identification, and cognitive determinants of math difficulty. J Educ Psychol 2005; 97: 493–513 CrossRef
e40. Fuchs LS, Fuchs D, Hamlett CL, Appleton AC: Explicitly teaching for transfer: effects on the mathematical problem-solving performance of students with mathematics disabilities. Learn Disabil Res Pr 2002; 17: 90–106 CrossRef
e41. Fuchs LS, Powell SR, Hamlett CL, Fuchs D, Cirino PT, Fletcher JM: Remediating computational deficits at third grade: a randomized field trial. J Res Educ Eff 2008; 1: 2–32 CrossRef MEDLINE PubMed Central
e42. Fuchs LS, Powell SR, Seethaler PM, et al.: The effects of strategic counting instruction, with and without deliberate practice, on number combination skill among students with mathematics difficulties. Learn Individ Differ 2010; 20: 89–100 CrossRef MEDLINE PubMed Central
e43. Fuchs LS, Powell SR, Seethaler PM, et al.: Remediating number combination and word problem deficits among students with mathematics difficulties: a randomized control trial. J Educ Psychol 2009; 101: 561–76 CrossRef MEDLINE PubMed Central
e44. Hutchinson NL: Effects of cognitive strategy instruction on algebra problem solving of adolescents with learning disabilities. Learn Disability Q 1993; 16: 34–63 CrossRef
e45. Jitendra AK, Dupuis DN, Rodriguez MC, et al.: A randomized controlled trial of the impact of schema-based instruction on mathematical outcomes for third-grade students with mathematics difficulties. Elem School J 2013; 114: 252–76 CrossRef
e46. Kroesbergen EH, van Luit JEH: Teaching multiplication to low math performers: guided versus structured instruction. Instr Sci 2002; 30: 361–78 CrossRef
e47. Lambert K, Spinath B: Do we need a special intervention program for children with mathematical learning disabilities or is private tutoring sufficient? J Educ Res Online 2014; 6: 68–93.
e48. Moran AS, Swanson HL, Gerber MM, Fung W: The effects of paraphrasing interventions on problem-solving accuracy for children at risk for math disabilities. Learn Disabil Res Pr 2014; 29: 97–105 CrossRef
e49. Powell SR, Driver MK, Julian TE: The effect of tutoring with nonstandard equations for students with mathematics difficulty. J Learn Disabil 2015; 48: 523–34 CrossRef MEDLINE
e50. Powell SR, Fuchs LS: Contribution of equal-sign instruction beyond word-problem tutoring for third-grade students with mathematics difficulty. J Educ Psychol 2010; 102: 381–94 CrossRef MEDLINE PubMed Central
e51. Powell SR, Fuchs LS, Fuchs D, Cirino PT, Fletcher JM: Effects of fact retrieval tutoring on third-grade students with math difficulties with and without reading difficulties. Learn Disabil Res Pr 2009; 24: 1–11 CrossRef MEDLINE PubMed Central
e52. Re AM, Pedron M, Tressoldi PE, Lucangeli D: Response to specific training for students with different levels of mathematical difficulties. Except Children 2014; 80: 337–52 CrossRef
e53. Sinner D, Kuhl J: Förderung mathematischer Basiskompetenzen in der Grundstufe der Schule für Lernhilfe. Z Entwickl Padagogis 2010; 42: 241–51.
e54. Swanson HL: Cognitive strategy interventions improve word problem solving and working memory in children with math disabilities. Front Psychol 2015; 6: 1–13 MEDLINE PubMed Central
e55. Swanson HL, Moran AS, Lussier C, Fung W: The effect of explicit and direct generative strategy training and working memory on word problem-solving accuracy in children at risk for math difficulties. Learn Disability Q 2014; 37: 111–22 CrossRef
e56. Tournaki N: The differential effects of teaching addition through strategy instruction versus drill and practice to students with and without learning disabilities. J Learn Disabil 2003; 36: 449–58 CrossRef MEDLINE
e57. van Luit JEH, Schopman EAM: Improving early numeracy of young children with special educational needs. Rem Spec Educ 2000; 21: 27–40 CrossRef
e58. Wißmann J, Heine A, Handl P, Jacobs AM: Förderung von Kindern mit isolierter Rechenschwäche und kombinierter Rechen- und Leseschwäche: Evaluation eines numerischen Förderprogramms für Grundschüler. Lern Lernstörungen 2013; 2: 91–109 CrossRef
e59. Kuhn JT: Meister CODY: Computerbasiertes Trainingsprogramm für Grundschulkinder mit Rechenschwierigkeiten. Beitrag auf dem 6. Frankfurter Forum 2016. Frankfurt am Main 2016.
e60. Fortes IS, Paula CS, Oliveira MC, Bordin IA, de Jesus Mari J, Rohde LA: A cross-sectional study to assess the prevalence of DSM-5 specific learning disorders in representative school samples from the second to sixth grade in Brazil. Eur Child Adoles Psy 2016; 25: 195–207 CrossRef MEDLINE
e61. Gross-Tsur V, Manor O, Shalev RS: Developmental dyscalculia: prevalence and demographic features. Dev Med Child Neurol 1996; 38: 25–33 MEDLINE
e62. Schuchardt K, Fischbach A, Balke-Melcher C, Mähler C: Die Komorbidität von Lernschwierigkeiten mit ADHS-Symptomen im Grundschulalter. Z Kinder Jug-Psych 2015; 43: 185–93 CrossRef MEDLINE
e63. Willcutt EG, Petrill SA, Wu S, et al.: Comorbidity between reading disability and math disability: concurrent psychopathology, functional impairment, and neuropsychological functioning. J Learn Disabil 2013; 46: 500–16 CrossRef MEDLINE PubMed Central
e64. Shalev RS, Auerbach J, Manor O, Gross-Tsur V: Developmental dyscalculia: prevalence and prognosis. Eur Child Adolesc Psychiatry 2000; 9: 58–64 CrossRef
e65. Fischbach A, Schuchardt K, Mähler C, Hasselhorn M: Zeigen Kinder mit schulischen Minderleistungen sozio-emotionale Auffälligkeiten? Z Entwickl Padagogis 2010; 42: 201–10.
e66. Barbaresi WJ, Katusic SK, Colligan RC, Weaver AL, Jacobsen SJ: Math learning disorder: incidence in a population-based birth cohort, 1976–82, Rochester, Minn. Ambul Pediatr 2005; 5: 281–9 CrossRef MEDLINE
e67. Daseking M, Petermann F, Simon K, Waldmann HC: Vorhersage von schulischen Lernstörungen durch SOPESS. Gesundheitswesen 2011; 73: 650–9 CrossRef MEDLINE
e68. Fischbach A, Schuchardt K, Brandenburg J, et al.: Prävalenz von Lernschwächen und Lernstörungen: Zur Bedeutung der Diagnosekriterien. Lern Lernstörungen 2013; 2: 65–76 CrossRef
e69. Landerl K, Moll K: Comorbidity of learning disorders: prevalence and familial transmission. J Child Psychol Psyc 2010; 51: 287–94 CrossRef MEDLINE
e70. Moll K, Kunze S, Neuhoff N, Bruder J, Schulte-Körne G: Specific learning disorder: prevalence and gender differences. PLoS One 2014; 9: 1–8.
e71. Ramaa S, Gowramma IP: A systematic procedure for identifying and classifying children with dyscalculia among primary school children in India. Dyslexia (Chichester, England) 2002; 8: 67–85 CrossRef MEDLINE
e72. Shalev RS, Manor O, Auerbach J, Gross-Tsur V: Persistence of developmental dyscalculia: what counts? Results from a 3-year prospective follow-up study. J Pediatr 1998; 133: 358–62 MEDLINE
e73. Badian NA: Persistent arithmetic, reading, or arithmetic and reading disability. Ann Dyslexia 1999; 49: 45–70.
e74. Cirino PT, Fuchs LS, Elias JT, Powell SR, Schumacher RF: Cognitive and mathematical profiles for different forms of learning difficulties. J Learn Disabil 2015; 48: 156–75 CrossRef MEDLINE PubMed Central
e75. Dirks E, Spyer G, van Lieshout ECDM, de Sonneville L: Prevalence of combined reading and arithmetic disabilities. J Learn Disabil 2008; 41: 460–73 CrossRef MEDLINE
e76. Jitendra AK, Dupuis DN, Star JR, Rodriguez MC: The effects of schema-based instruction on the proportional thinking of students with mathematics difficulties with and without reading difficulties. J Learn Disabil 2016; 49: 354–67 CrossRef MEDLINE
e77. Lewis C, Hitch GJ, Walker P: The prevalence of specific arithmetic difficulties and specific reading difficulties in 9– to 10-year old boys and girls. J Child Psychol Psyc 1994; 35: 283–92 CrossRef
e78. Peake C, Jiménez JE, Rodríguez C, Bisschop E, Villarroel R: Syntactic awareness and arithmetic word problem solving in children with and without learning disabilities. J Learn Disabil 2015; 48: 593–601 CrossRef MEDLINE
e79. Shalev RS, Manor O, Gross-Tsur V: Developmental dyscalculia: a prospective six-year follow-up. Dev Med Child Neurol 2005; 47: 121–25 CrossRef
e80. von Aster M, Schweiter M, Weinhold Zulauf M: Rechenstörungen bei Kindern. Vorläufer, Prävalenz und psychische Symptome. Z Entwickl Padagogis 2007; 39: 85–96.
e81. Kuhn JT, Schwenk C, Raddatz J, Dobel C, Holling H: CODY-Mathetest: Mathematiktest für die 2.-4. Klasse (CODY-M 2–4). Düsseldorf: Kaasa health 2017.
e82. Ennemoser M, Krajewski K, Sinner D: Test mathematischer Basiskompetenzen ab Schuleintritt (MBK 1+). Göttingen: Hogrefe 2017.
e83. Merdian G, Merdian F, Schardt K: Bamberger Dyskalkuliediagnostik 1–4+ (R) (BADYS 1–4+). Bamberg: PaePsy 2015.
e84. Gölitz D, Roick T, Hasselhorn M: Deutscher Mathematiktest für vierte Klassen (DEMAT 4). Göttingen: Hogrefe 2006.
e85. Holzer N, Schaupp H, Lenart F: Eggenberger Rechentest 3+ (ERT 3+). Göttingen: Hogrefe 2010.
e86. Krajewski K, Küspert P, Schneider W: Deutscher Mathematiktest für erste Klassen (DEMAT 1+). Göttingen: Hogrefe 2002.
e87. Götz L, Lingel K, Schneider W: Deutscher Mathematiktest für sechste Klassen (DEMAT 6+). Göttingen: Hogrefe 2013.
e88. Götz L, Lingel K, Schneider W: Deutscher Mathematiktest für fünfte Klassen (DEMAT 5+). Göttingen: Hogrefe 2013.
e89. Lenart F, Holzer N, Schaupp H: Eggenberger Rechentest 2+ (ERT 2+). Göttingen: Hogrefe 2003.
e90. Krajewski K, Liehm S, Schneider W: Deutscher Mathematiktest für zweite Klassen (DEMAT 2+). Göttingen: Hogrefe 2004.
e91. Schaupp H, Lenart F, Holzer N: Eggenberger Rechentest 4+ (ERT 4+). Göttingen: Hogrefe 2010.
e92. Merdian G, Merdian F, Schardt K: Bamberger Dyskalkuliediagnostik 5–8+ (BADYS 5–8+). Bamberg: PaePsy 2012.
e93. Roick T, Gölitz D, Hasselhorn M: Deutscher Mathematiktest für dritte Klassen (DEMAT 3+). Göttingen: Hogrefe 2004.
e94. Haffner J, Baro K, Parzer P, Resch F: Heidelberger Rechentest (HRT 1–4). Göttingen: Hogrefe 2005.
e95. Schipper W, Wartha S, von Schroeders N: Bielefelder Rechentest für das zweite Schuljahr (BIRTE 2). Braunschweig: Schroedel 2011.
e96. Schaupp H, Holzer N, Lenart F: Eggenberger Rechentest 1+ (ERT 1+). Göttingen: Hogrefe 2003.
e97. Kaufmann L, Nuerk HC, Graf M, Krinzinger H, Delazer M, Willmes K: Test zur Erfassung numerisch-rechnerischer Fertigkeiten vom Kindergarten bis zur 3. Klasse (TEDI-MATH). Bern: Hogrefe 2009.
e98. May P, Bennöhr J: Kompetenzerfassung in Kindergarten und Schule (KEKS). Berlin: Cornelsen 2013.
e99. Grube D, Weberschock U, Blum M, Hasselhorn M: Diagnostisches Inventar zu Rechenfertigkeiten im Grundschulalter (DIRG). Göttingen: Hogrefe 2010.
e100. Fritz A, Ehlert A, Ricken G, Balzer L: Mathematik- und Rechenkonzepte bei Kindern der erste Klassenstufe – Diagnose (MARKO-D1+). Göttingen: Hogrefe 2017.
e101. von Aster M, Weinhold-Zulauf M, Horn R: Neuropsychologische Testbatterie für Zahlenverarbeitung und Rechnen bei Kindern (ZAREKI-R). Frankfurt am Main: Pearson Assessment & Information 2006.
e102. Schroeders U, Schneider W: Test zur Diagnose von Dyskalkulie (TeDDy-PC). Göttingen: Hogrefe 2008.
e103. Schmidt S, Ennemoser M, Krajewski K: Deutscher Mathematiktest für neunte Klassen (DEMAT 9). Göttingen: Hogrefe 2013.
e104. Strathmann AM, Klauer KJ: Lernverlaufsdiagnostik – Mathematik für zweite bis vierte Klassen (LVD-M 2–4). Göttingen: Hogrefe 2012.
e105. Jacobs C, Petermann F: Rechenfertigkeiten- und Zahlenverarbeitungs-Diagnostikum für die 2. bis 6. Klasse (RZD 2–6). Göttingen: Hogrefe 2005.
e106. Lenhard W, Hasselhorn M, Schneider W: Kombiniertes Leistungsinventar zur allgemeinen Schulleistung und für Schullaufbahnempfehlungen in der vierten Klasse (KLASSE 4). Göttingen: Hogrefe 2011.
e107. Holzer N, Lenart F, Schaupp H: Eggenberger Rechentest für Jugendliche und Erwachsene (ERT JE). Bern: Hogrefe 2017.
e108. Moog W, Schulz A: Zahlen begreifen: Diagnose und Förderung bei Kindern mit Rechenschwäche. Weihheim und Basel: Beltz 2005.
e109. Dybuster AG: Dybuster Calcularis. Zürich: Dybuster AG 2007.
e110. Gerlach M, Fritz A, Leutner D: MARKO-T. Göttingen: Hogrefe 2013.
e111. Kaasa health: Meister Cody – Talasia. Düsseldorf: Kaasa health 2013.
e112. Krajewski K, Nieding G, Schneider W: Mengen, zählen, Zahlen. Göttingen: Hogrefe 2013.
e113. Lenhard W, Lenhard A: Rechenspiele mit Elfe und Mathis I. Göttingen: Hogrefe 2009.
e114. Schlotmann A: Warum Kinder an Mathe scheitern. Hirschberg an der Bergstraße: Supperverlag 2007.
e115. Flierl U, Francich W, Wagenhäuser R: ALFONS Lernwelt Mathematik 1. Braunschweig: Schroedel 2009.
e116. Flierl U, Francich W, Wagenhäuser R: ALFONS Lernwelt Mathematik 2. Braunschweig: Schroedel 2009.
e117. Wittmann EC, Müller GN: Das Zahlenbuch 1. Stuttgart, Leipzig: Klett 2012.
e118. Rademacher J, Lehmann W, Quaiser-Pohl C, Günther A, Trautewig N: Mathematik im Vorschulalter. Göttingen: Vandenhoeck & Ruprecht 2009.
e119. Schoppek W: Merlins Rechenmühle. Bayreuth: Universität Bayreuth 2010.
e120. Fritz A, Gerlach M: Mina und der Maulwurf. Berlin: Cornelsen 2011.
e121. Mammarella IC, Hill F, Devine A, Caviola S, Szűcs D: Math anxiety and developmental dyscalculia: a study on working memory processes. J Clin Exp Neuropsyc 2015; 37: 878–87 CrossRef MEDLINE
e122. Moll K, Göbel SM, Snowling MJ: Basic number processing in children with specific learning disorders: comorbidity of reading and mathematics disorders. Child Neuropsychol 2015; 21: 399–417 CrossRef MEDLINE
e123. Donker M, Kroesbergen EH, Slot E, van Viersen S, de Bree E: Alphanumeric and non-alphanumeric rapid automatized naming in children with reading and/or spelling difficulties and mathematical difficulties. Learn Individ Differ 2016; 47: 80–7 CrossRef
e124. Maehler C, Schuchardt K: Working memory in children with specific learning disorders and/or attention deficits. Learn Individ Differ 2016; 49: 341–7 CrossRef
e125. Raddatz J, Kuhn JT, Holling H, Moll K, Dobel C: Comorbidity of arithmetic and reading disorder. J Learn Disabil 2017; 50: 298–308 MEDLINE
e126. Karakonstantaki ES, Simos PG, Michalis V, Micheloyannis S: Assessment and conceptual remediation of basic calculation skills in elementary school students. Brit J Dev Psychol 2018; 36: 78–97 CrossRef MEDLINE
e127. Lambert K, Spinath B: Conservation abilities, visuospatial skills, and numerosity processing speed: association with math achievement and math difficulties in elementary school children. J Learn Disabil 2018; 51: 223–35 CrossRef MEDLINE
e128. Mammarella IC, Caviola S, Giofrè D, Szűcs D: The underlying structure of visuospatial working memory in children with mathematical learning disability. Brit J Dev Psychol 2018; 36: 220–35 CrossRef MEDLINE
e129. McDonald PA, Berg DH: Identifying the nature of impairments in executive functioning and working memory of children with severe difficulties in arithmetic. Child Neuropsychol 2018; 24: 1047–62 CrossRef MEDLINE
e130. Morsanyi K, van Bers BMCW, O‘Connor PA, McCormack T: Developmental dyscalculia is characterized by order processing deficits: evidence from numerical and non-numerical ordering tasks. Dev Neuropsychol 2018; 43: 595–621 CrossRef MEDLINE
e131. Koponen TK, Sorvo R, Dowker A, et al.: Does multi-component strategy training improve calculation fluency among poor performing elementary school children? Front Psychol 2018; 9: 1–14.
e132. Kohn J, Rauscher L, Käser T, et al.: Effekte des „Calcularis“-Trainings. Teil 1: Domänen-spezifische Veränderungen. Lern Lernstörungen 2017; 6: 51–63 CrossRef
e133. Morsanyi K, van Bers BMCW, McCormack T, McGourty J: The prevalence of specific learning disorder in mathematics and comorbidity with other developmental disorders in primary school-age children. Brit J Psychol 2018; 109: 917–40 CrossRef MEDLINE
e134. Devine A, Hill F, Carey E, Szűcs D: Cognitive and emotional math problems largely dissociate: prevalence of developmental dyscalculia and mathematics anxiety. J Educ Psychol 2018; 110: 431–44 CrossRef
e135. Moll K, Landerl K, Snowling MJ, Schulte-Körne G: Understanding comorbidity of learning disorders: task-dependent estimates of prevalence. J Child Psychol Psychiatry 2018; doi: 10.1111/jcpp.12965 (Epub ahead of print) CrossRef