DÄ internationalArchive45/2019The Treatment of Proximal Humerus Fracture Using Internal Fixation With Fixed-angle Plates

Original article

The Treatment of Proximal Humerus Fracture Using Internal Fixation With Fixed-angle Plates

A randomized controlled study comparing carbon fiber reinforced polyetheretherketone with titanium

Dtsch Arztebl Int 2019; 116: 757-63. DOI: 10.3238/arztebl.2019.0757

Ziegler, P; Maier, S; Stöckle, U; Gühring, M; Stuby, F M

Background: Implants made of various types of material can be used for the internal fixation of fractures. Carbon fiber reinforced polyetheretherketone (CFR-PEEK) is a radiolucent material that may have advantageous handling properties compared with titanium implants.

Methods: Seventy-six patients with proximal humerus fractures requiring surgery were randomized to receive a fixed-angle plate made out of either titanium or CFR-PEEK. To measure the functional outcome, the DASH score (Disabilities of Arm, Shoulder, and Hand; primary endpoint), the Simple Shoulder Test (SST), and the Oxford Shoulder Score (OSS) were determined in 63 patients at 6 weeks, 12 weeks, and 6 months after surgery, accompanied at each time point by radiological evaluation.

Results: Both groups displayed improvement in DASH scores 6 months after surgery (CFR-PEEK: 27.5 ± 20.5; titanium: 28.5 ± 17.9; p = 0.82). Sensitivity analysis with multiple imputations confirmed this result (27.4 ± 19.2 versus 28.5 ± 16.6). The OSS and SST scores were likewise improved in both groups. All patients displayed full bony consolidation 12 weeks after surgery. In no case was material failure, secondary dislocation, or screw perforation seen. No difference was seen in the maintenance of postoperative reposition between the CFR-PEEK group and the titanium group.

Conclusion: The internal fixation of proximal humerus fractures with either CFR-PEEK or titanium led to clinical improvement 6 months after surgery. No clinical or radiological difference in outcomes was seen between the two groups. Because of the study design, however, the equivalence of the two interventions was not conclusively demonstrated; a non-inferiority study would have been needed for this purpose.

LNSLNS

Fractures of the proximal humerus are common in humans, accounting for 4–5% of all fractures and approximately 10% of fractures in patients over 65 years of age (13). Studies have shown an increasing incidence of this fracture, primarily explained by the increased risk of osteoporosis in the ageing population (4).

Treatment decision making is based on fracture morphology and on patient-specific characteristics such as age, comorbidities, level of physical activity, and adherence.

A broad spectrum of treatments are available for proximal humerus fractures. Breaks with no or only minor displacement can usually be treated conservatively with short-term sling immobilization (5).

Surgical treatment options include internal fixation with fixed-angle (locking) and non-fixed-angle (non-locking) plates, screws, K-wires, intramedullary nails, and total joint replacement. Open reduction and stabilization with locking plates is frequently the treatment of choice for displaced or comminuted fractures of the proximal humerus (6, 7). This strategy aims to achieve anatomic reconstruction and retention of the humeral head.

Plates with different material properties are used for this procedure. Plates made of steel, titanium or, more recently, carbon fiber reinforced polyetheretherketone (CFR-PEEK) are most commonly used. In biomechanical studies, fixation with CFR-PEEK plates allowed for more minimal movements at the fracture site than fixation with titanium plates, with equal or even superior stability of the connection between screws and plate (810). In addition, CRF-PEEK is a radiolucent material, offering the advantage of easier intraoperative and postoperative radiographic assessment of the fracture situation (11). The aim of our study was to compare the functional and radiographic outcomes in patients with proximal humerus fracture treated with internal fixation using locking plates made of CRF-PEEK or titanium. The primary endpoint was the Disabilities of Arm, Shoulder and Hand (DASH) score at 6 months after surgery.

Methods

Study design and study population

In this randomized controlled trial, proximal humerus fractures in 76 patients were managed using plates made of either titanium or CFR-PEEK. The outcome parameters included:

  • Age
  • Sex
  • Body mass index (BMI)
  • Risk classification according to the American Society of Anesthesiologists (ASA)
  • Fracture type
  • Comorbidities

Patients were followed up at 6 weeks, 12 weeks, and 6 months after surgery. The primary endpoint was the DASH score (0100) at 6 months after surgery. The secondary endpoints included:

  • Simple Shoulder Test (SST; 0–100%)
  • Oxford Shoulder Score (OSS; 12–60 points)
  • Maintenance of reduction outcome (head–shaft angle) (12, 13)

Statistical analysis was performed using the t-test, repeated-measures analysis of variance (rANOVA), Fisher’s exact test, and the chi-square test. The level of significance was set at p<0.05. A detailed description of the methods used is provided in the eMethods. The study procedure with follow-up time points is detailed in eTable 1.

Study procedure with follow-up time points
Study procedure with follow-up time points
eTable 1
Study procedure with follow-up time points

Implants

The CFR-PEEK plate (PEEK Power Humeral Fracture Plate; Arthrex, Naples, Florida, USA) is made of polyetheretherketone (14) reinforced with carbon fibers (55–60%). The plate is anatomically preshaped and designed to allow placement of polyaxial locking screws and fixation of stay sutures at the plate. It is radiolucent and designed for use with 3.5 mm and 4.0 mm titanium screws in the shaft and head of the humerus, respectively (Figure 1). The CFR-PEEK–titanium interface eliminates the risk of cold welding between screws and plate. Cold welding is a phenomenon whereby two metal components of identical composition adhere strongly even at room temperature (15). Georgiadis et al. found that when they attempted removal of titanium locking plates from the femur, 17% of the screws were cold welded to the plate (16). In the case of the humerus, three screws (locking or conventional) are used to fix the plate to the shaft and seven screws (locking) at the head.

A 56-year-old patient with a left proximal humerus fracture, treated with a CFR-PEEK plate
A 56-year-old patient with a left proximal humerus fracture, treated with a CFR-PEEK plate
Figure 1
A 56-year-old patient with a left proximal humerus fracture, treated with a CFR-PEEK plate

In the comparison group, a titanium locking plate (Proximal Humerus Internal Locking System—PHILOS; Depuy Synthes, West Chester, Pennsylvania, USA) was used. The plate is anatomically preshaped and also designed to allow placement of locking 3.5 mm titanium screws at the humeral shaft and head as well as fixation to the rotator cuff using stay sutures. Three screws (locking or conventional) can be placed at the humeral shaft and nine screws (locking) at the humeral head (Figure 1). In contrast to the CFR-PEEK plate described above, this system does not allow for polyaxial screw placement. Ockert et al. found no advantages or disadvantages associated with the use of plates designed for polyaxial screw insertion in patients with proximal humerus fractures (17).

Results

Altogether, 76 patients (60 women, 16 men) were included in this study. The mean age was 60.7 ± 12.7 years. Thirty-seven (49%) patients were randomized to receive a CRF-PEEK plate and 39 (51%) to receive a titanium plate. There were no significant differences between the two groups with respect to age, BMI, involvement of dominant shoulder, or comorbidity profile (Table 1). However, the groups differed significantly with respect to fracture type. The duration of inpatient care after surgery was 4.8 ± 0.4 days in the CFR-PEEK group and 4.9 ± 0.3 days in the titanium group (p = 0.81).

Baseline characteristics in the two groups*1
Baseline characteristics in the two groups*1
Table 1
Baseline characteristics in the two groups*1

In two patients, a head-split fracture occurred intraoperatively. Two further patients had to undergo surgery a second time because they suffered a new injury after the initial operation. Nine patients withdrew from the study postoperatively without giving a reason. Consequently, 13 patients were not available for postoperative follow-up (Figure 2). The analysis of the functional outcomes is based on the remaining group of 63 patients (CFR-PEEK n = 32, titanium n = 31). Surgeon 1 treated 15 patients with a CFR-PEEK plate and 25 patients with a titanium plate. Seventeen CFR-PEEK plates and 6 titanium plates were implanted by surgeon 2.

CRF-PEEK group versus titanium group
CRF-PEEK group versus titanium group
Figure 2
CRF-PEEK group versus titanium group

The radiographs obtained 6 weeks after surgery were available for analysis from all patients. Radiographic follow-up at 12 weeks after surgery was performed in 11 cases by community-based specialists; because of the lack of standardization of the radiographs, it was not possible to measure the head–shaft angle. Over the further course of the study, no adverse events, such as infection, displacement, screw perforation, and non-union, were observed.

Functional outcome

Six months after surgery, no significant differences were found between the DASH scores of the CFR-PEEK group and the titanium group (27.5 ± 20.5 vs 28.5 ± 17.9; p = 0.82). Sensitivity analysis with multiple imputations confirmed the results of the primary analysis (mean 27.4 ± 19.2 vs 28.5 ± 16.6; p = 0.81). Figure 3 depicts the OSS, SST, and DASH scores of the two groups at all follow-up time points as a box-plot diagram. Improvements in functional outcome were achieved in both groups over the postoperative course (eTable 2).

Functional outcomes of the CFR-PEEK group and the titanium group at 6 weeks, 12 weeks, and 6 months after surgery, measured using (A) the DASH score (0 best score, 100 poorest score), (B) the Simple Shoulder Test (SST; 0 poorest score, 100 best score), and (C) the Oxford Shoulder Score (OSS; 0 = poorest score, 48 = best score). Error bars represent one standard deviation. Ti, titanium.
Functional outcomes of the CFR-PEEK group and the titanium group at 6 weeks, 12 weeks, and 6 months after surgery, measured using (A) the DASH score (0 best score, 100 poorest score), (B) the Simple Shoulder Test (SST; 0 poorest score, 100 best score), and (C) the Oxford Shoulder Score (OSS; 0 = poorest score, 48 = best score). Error bars represent one standard deviation. Ti, titanium.
Figure 3
Functional outcomes of the CFR-PEEK group and the titanium group at 6 weeks, 12 weeks, and 6 months after surgery, measured using (A) the DASH score (0 best score, 100 poorest score), (B) the Simple Shoulder Test (SST; 0 poorest score, 100 best score), and (C) the Oxford Shoulder Score (OSS; 0 = poorest score, 48 = best score). Error bars represent one standard deviation. Ti, titanium.
Functional outcome
Functional outcome
eTable 2
Functional outcome

Radiographic outcome

Both in the CFR-PEEK group and in the titanium group, all patients (n = 63) had achieved complete bony consolidation of the fractures by 12 weeks after surgery. No material failure, secondary displacement, or screw perforation was observed. In the CFR-PEEK group, the mean head–shaft angle was 142.46 ± 6.39° immediately after surgery, 142.13 ± 6.38° at 6 weeks after surgery, and 142.53 ± 6.45° at 12 weeks after surgery. The mean head–shaft angles in the titanium group were 139.97 ± 7.70°, 139.82 ± 7.70°, and 138.81 ± 8.21° , respectively. Thus, significant loss of reduction was observed neither in the CFR-PEEK group nor in the titanium group over the postoperative course (Table 2).

Humerus head–shaft angle at 2–4 days, 6 weeks, and 12 weeks after surgery
Humerus head–shaft angle at 2–4 days, 6 weeks, and 12 weeks after surgery
Table 2
Humerus head–shaft angle at 2–4 days, 6 weeks, and 12 weeks after surgery

Discussion

In both study groups (CFR-PEEK and titanium), bony consolidation of the treated fractures was confirmed in all patients at 12 weeks after surgery. The functional outcomes 6 months after surgery had improved compared with 6 weeks after surgery. No significant difference was noted between the CFR-PEEK group and the titanium group.

To date, no consensus about the best strategy for the management of proximal humerus fractures has been reached in the literature. In the absence of prospective controlled trials, the superiority of surgical treatment over conservative treatment remains unproven. Comparative studies have not found significant differences between surgical and non-surgical treatment with respect to the outcome parameters, but have shown higher complication rates after surgical procedures (1821).

In this study, product-related adverse events were observed neither in the CFR-PEEK group nor in the titanium group during the 3-month follow-up period. The high complication rate described after plating for proximal humerus fractures is directly related to the initial surgical procedure (22, 23). Complications such as primary screw perforation, plate malpositioning, or loss of reduction due to the lack of medial support can be prevented by optimizing the surgical technique. In a multicenter trial, intraoperative screw perforation was observed in 14% of patients after locked plating of proximal humerus fractures (23).

Due to the radiolucent material of the CFR-PEEK plate, it is possible to visualize all the screws used in two-view radiographs without superimposition of the plate on the fracture site. In addition, the polyaxial locking self-tapping screws allow for correct screw placement in the parts of the humeral head with high bone mineral density. Inadequate primary stability and lack of medial support may result in loss of reduction with subsequent varus angulation and in screw cutout with destruction of the glenoid (2426). Numerous biomechanical and clinical studies have demonstrated the importance of reconstructing the medial support (2730).

Another potential cause of loss of reduction is the high stiffness of the locking plate, which may result in failure of the construct at the screw–bone interface, especially in patients with osteoporosis. Lill et al. studied the initial stiffness of a variety of implants designed for the treatment of proximal humerus fractures (31). They found that implants with lower stiffness and more elastic properties appeared to lessen the peak stresses at the bone–implant interface, which would make them particularly suitable for fracture fixation in osteoporotic bone. Consequently, the CFR-PEEK plate, with elasticity similar to that of human bone, could prevent screw cutout and loss of reduction with subsequent varus angulation, because it is less stiff than conventional titanium plates. In the study by Lill et al., no significant loss of reduction was observed 12 weeks after CFR-PEEK plate fixation of proximal humerus fractures. Schliemann et al. found a lower rate of secondary varus displacement after treatment of proximal humerus fractures with CFR-PEEK plates than in an independent group treated with titanium implants (32). One explanation could be that the high elasticity of the PEEK plate compared with the titanium plate helps to prevent failure of the construct at the screw–bone interface.

According to the most recent literature, both CFR-PEEK plate systems and titanium plate systems achieve good to excellent mid- and long-term clinical results (3335). Ockert et al. reported good to outstanding functional long-term outcomes in patients with proximal humerus fracture treated with a locking titanium plate (34). Hirschmann et al. described similar favorable subjective and objective clinical outcomes and a similar complication rate (17%, including pain and stiffness) in patients treated with a conventional titanium locking plate after a median 5 years of follow-up (33).

Rotini et al., in a large study of 160 proximal humerus fractures treated with CFR-PEEK plates (Diphos H), observed no improvement in clinical or functional outcome after 2 years and a low complication rate (9%; complications included a humeral head necrosis and a case with lack of bone healing) compared with the outcomes published in the literature. They highlight as advantages of CFR-PEEK plates the improved intraoperative fluoroscopic visibility of the fracture fragments and the absence of screw-to-plate cold fusion, making plate removal easier than with titanium plates (35).

Our study found similar results with respect to clinical and radiographic outcomes after treatment with CFR-PEEK and titanium plates, despite the difference regarding fracture classification, with a larger number of four-part fractures in the titanium group. For each of the clinical scores, significant improvements were noted between the follow-ups at 6 weeks and 12 weeks and again between 12 weeks and 6 months after surgery. This can be attributed to the reduction in the importance of immobilization as part of the standardized postoperative follow-up care and the subsequent increasing emphasis on active physiotherapeutic treatment.

One of the limitations of our study was the comparatively short follow-up. It cannot be ruled out that some patients developed complications later. Furthermore, comparability of the PEEK group and the titanium group was limited by the fact that randomization of the patients resulted in an unequal distribution of fracture types between the two study groups.

Because the conventional radiographs obtained immediately after surgery and at 6 and 12 weeks after the procedure were interpreted, neither investigators nor patients could be blinded during the follow-up period. The study design did not allow for conclusions on the equivalence of the two interventions. That would have required a non-inferiority study design.

Data sharing
The authors are willing to share the data with other researchers for scientific purposes. Interested parties should contact Markus Gühring.

Financial support
This study was financially supported by Arthrex.

Conflict of interest
Dr. Ziegler, Prof. Stöckle, Dr. Gühring, and Dr. Stuby received study support (third party funding) from Arthex.

Mr. Maier declares that no conflict of interest exists.

Manuscript received on 17 April 2019; revised version accepted on
27 August 2019

Translated from the original German by Ralf Thoene, MD.

Corresponding author
Dr. med. Markus Gühring
Klinik im Kronprinzenbau
Listplatz 1
72764 Reutlingen, Germany
dr.guehring@kronprinzenbau-klinik.de

Cite this as:
Ziegler P, Maier S, Stöckle U, Gühring M, Stuby FM: The treatment of proximal humerus fracture using internal fixation with fixed-angle plates—a randomized controlled study comparing carbon fibre reinforced polyetheretherketone with titanium. Dtsch Arztebl Int 2019; 116: 757–63. DOI: 10.3238/arztebl.2019.0757

Supplementary material

eMethods, eTables:
www.aerzteblatt-international.de/19m0757

1.
Passaretti D, Candela V, Sessa P, Gumina S: Epidemiology of proximal humeral fractures: a detailed survey of 711 patients in a metropolitan area. J Shoulder Elbow Surg 2017; 26: 2117–24 CrossRef MEDLINE
2.
Bell JE, Leung BC, Spratt KF, et al.: Trends and variation in incidence, surgical treatment, and repeat surgery of proximal humeral fractures in the elderly. J Bone Joint Surg Am 2011; 93: 121–31 CrossRef MEDLINE PubMed Central
3.
Baron JA, Karagas M, Barrett J, et al.: Basic epidemiology of fractures of the upper and lower limb among Americans over 65 years of age. Epidemiology 1996; 7: 612–8 CrossRef MEDLINE
4.
Palvanen M, Kannus P, Niemi S, Parkkari J: Update in the epidemiology of proximal humeral fractures. Clin Orthop Relat Res 2006; 442: 87–92 CrossRef MEDLINE
5.
Burkhart KJ, Dietz SO, Bastian L, Thelen U, Hoffmann R, Müller LP: The treatment of proximal humeral fracture in adults. Dtsch Arztebl Int 2013; 110: 591–7 VOLLTEXT
6.
Tepass A, Blumenstock G, Weise K, Rolauffs B, Bahrs C: Current strategies for the treatment of proximal humeral fractures: an analysis of a survey carried out at 348 hospitals in Germany, Austria, and Switzerland. J Shoulder Elbow Surg 2013; 22: e8–14 CrossRef MEDLINE
7.
Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften: S1 Leitlinie: Oberarmkopffraktur. AWMF-Nr 012–023 18.10.2017 CrossRef
8.
Schliemann B, Seifert R, Theisen C, et al.: PEEK versus titanium locking plates for proximal humerus fracture fixation: a comparative biomechanical study in two- and three-part fractures. Arch Orthop Trauma Surg 2017; 137: 63–71 CrossRef MEDLINE
9.
Katthagen JC, Schwarze M, Warnhoff M, Voigt C, Hurschler C, Lill H: Influence of plate material and screw design on stiffness and ultimate load of locked plating in osteoporotic proximal humeral fractures. Injury 2016; 47: 617–24 CrossRef MEDLINE
10.
Hak DJ, Fader R, Baldini T, Chadayammuri VBS: Locking screw-plate interface stability in carbon-fibre reinforced polyetheretherketone proximal humerus plates. Int Orthop 2017; 41: 1735–9 CrossRef MEDLINE
11.
Padolino A, Porcellini G, Guollo B, et al.: Comparison of CFR-PEEK and conventional titanium locking plates for proximal humeral fractures: a retrospective controlled study of patient outcomes. Musculoskelet Surg 2018; 102: 49–56 CrossRef MEDLINE
12.
Hertel R, Knothe U, Ballmer FT: Geometry of the proximal humerus and implications for prosthetic design. J Shoulder Elbow Surg 2002; 11: 331–8 CrossRef MEDLINE
13.
Solberg BD, Moon CN, Franco DP, Paiement GD: Surgical treatment of three and four-part proximal humeral fractures. J Bone Joint Surg Am 2009; 91: 1689–97 CrossRef MEDLINE
14.
Katthagen JC, Ellwein A, Lutz O, Voigt C, Lill H: Outcomes of proximal humeral fracture fixation with locked CFR-PEEK plating. Eur J Orthop Surg Traumatol 2017; 27: 351–8 CrossRef MEDLINE
15.
Müller M, Mückley, T, Hofmann GO: Kosten und Komplikationen der Materialentfernung. Trauma Berufskrankh 2007; 9 (Suppl 3): p. 297 CrossRef
16.
Georgiadis GM, Gove NK, Smith AD, Rodway IP: Removal of the less invasive stabilization system. J Orthop Trauma 2004; 18: 562–4 CrossRef MEDLINE
17.
Ockert B, Braunstein V, Kirchhoff C, et al.: Monoaxial versus polyaxial screw insertion in angular stable plate fixation of proximal humeral fractures: radiographic analysis of a prospective randomized study. J Trauma 2010; 69: 1545–51 CrossRef MEDLINE
18.
Fjalestad T, Hole MO: Displaced proximal humeral fractures: operative versus non-operative treatment—a 2-year extension of a randomized controlled trial. Eur J Orthop Surg Traumatol 2014; 24: 1067–73 CrossRef MEDLINE
19.
Fjalestad T, Hole MO, Hovden IA, Blucher J, Stromsoe K: Surgical treatment with an angular stable plate for complex displaced proximal humeral fractures in elderly patients: a randomized controlled trial. J Orthop Trauma 2012; 26: 98–106 CrossRef MEDLINE
20.
Olerud P, Ahrengart L, Ponzer S, Saving J, Tidermark J: Internal fixation versus nonoperative treatment of displaced 3-part proximal humeral fractures in elderly patients: a randomized controlled trial. J Shoulder Elbow Surg 2011; 20: 747–55 CrossRef MEDLINE
21.
Sanders RJ, Thissen LG, Teepen JC, van Kampen A, Jaarsma RL: Locking plate versus nonsurgical treatment for proximal humeral fractures: better midterm outcome with nonsurgical treatment. J Shoulder Elbow Surg 2011; 20: 1118–24 CrossRef MEDLINE
22.
Schliemann B, Siemoneit J, Theisen C, Kosters C, Weimann A, Raschke MJ: Complex fractures of the proximal humerus in the elderly—outcome and complications after locking plate fixation. Musculoskelet Surg 2012; 96 (Suppl 1): 3–11 CrossRef MEDLINE
23.
Südkamp N, Bayer J, Hepp P, et al.: Open reduction and internal fixation of proximal humeral fractures with use of the locking proximal humerus plate. Results of a prospective, multicenter, observational study. J Bone Joint Surg Am 2009; 91: 1320–8 CrossRef MEDLINE
24.
Brunner F, Sommer C, Bahrs C, et al.: Open reduction and internal fixation of proximal humerus fractures using a proximal humeral locked plate: a prospective multicenter analysis. J Orthop Trauma 2009; 23: 163–72 CrossRef MEDLINE
25.
Jost B, Spross C, Grehn H, Gerber C: Locking plate fixation of fractures of the proximal humerus: analysis of complications, revision strategies and outcome. J Shoulder Elbow Surg 2013; 22: 542–9 CrossRef MEDLINE
26.
Sproul RC, Iyengar JJ, Devcic Z, Feeley BT: A systematic review of locking plate fixation of proximal humerus fractures. Injury 2011; 42: 408–13 CrossRef MEDLINE
27.
Erdogan M, Desteli EE, Imren Y, Uzturk A, Kilic M, Sezgin H: The effect of inferomedial screw on postoperative shoulder function and mechanical alignment in proximal humerus fractures. Eur J Orthop Surg Traumatol 2014; 24: 1055–9 CrossRef MEDLINE
28.
Gardner MJ, Weil Y, Barker JU, Kelly BT, Helfet DL, Lorich DG: The importance of medial support in locked plating of proximal humerus fractures. J Orthop Trauma 2007; 21: 185–91 CrossRef MEDLINE
29.
Ponce BA, Thompson KJ, Raghava P, et al.: The role of medial comminution and calcar restoration in varus collapse of proximal humeral fractures treated with locking plates. J Bone Joint Surg Am 2013; 95: e113 (1–7) CrossRef MEDLINE
30.
Zhang L, Zheng J, Wang W, et al.: The clinical benefit of medial support screws in locking plating of proximal humerus fractures: a prospective randomized study. Int Orthop 2011; 35: 1655–61 CrossRef MEDLINE PubMed Central
31.
Lill H, Hepp P, Korner J, et al.: Proximal humeral fractures: how stiff should an implant be? A comparative mechanical study with new implants in human specimens. Arch Orthop Trauma Surg 2003; 123: 74–81 CrossRef MEDLINE
32.
Schliemann B, Hartensuer R, Koch T, et al.: Treatment of proximal humerus fractures with a CFR-PEEK plate: 2-year results of a prospective study and comparison to fixation with a conventional locking plate. J Shoulder Elbow Surg 2015; 24: 1282–8 CrossRef MEDLINE
33.
Hirschmann MT, Fallegger B, Amsler F, Regazzoni P, Gross T: Clinical longer-term results after internal fixation of proximal humerus fractures with a locking compression plate (PHILOS). J Orthop Trauma 2011; 25: 286–93 CrossRef MEDLINE
34.
Ockert B, Siebenburger G, Kettler M, Braunstein V, Mutschler W: Long-term functional outcomes (median 10 years) after locked plating for displaced fractures of the proximal humerus. J Shoulder Elbow Surg 2014; 23: 1223–31 CrossRef MEDLINE
35.
Rotini R, Cavaciocchi M, Fabbri D, et al.: Proximal humeral fracture fixation: multicenter study with carbon fiber peek plate. Musculoskelet Surg 2015; 99 Suppl 1: 1–8 CrossRef MEDLINE
BG Hospital Tübingen, University Clinic for Trauma and Reconstructive Surgery, University of Tübingen, Germany: Dr. med. Patrick Ziegler, Sven Maier
Center for Musculoskeletal Surgery, Charité University Medical Center Berlin, Germany:
Prof. Dr. med. Ulrich Stöckle
Center for Bone and Joint Surgery, Kronprinzenbau Hospital, Reutlingen, Germany:
Dr. med. Markus Gühring
BG Hospital Murnau, Murnau, Germany: PD Dr. med. Fabian Stuby
A 56-year-old patient with a left proximal humerus fracture, treated with a CFR-PEEK plate
A 56-year-old patient with a left proximal humerus fracture, treated with a CFR-PEEK plate
Figure 1
A 56-year-old patient with a left proximal humerus fracture, treated with a CFR-PEEK plate
CRF-PEEK group versus titanium group
CRF-PEEK group versus titanium group
Figure 2
CRF-PEEK group versus titanium group
Functional outcomes of the CFR-PEEK group and the titanium group at 6 weeks, 12 weeks, and 6 months after surgery, measured using (A) the DASH score (0 best score, 100 poorest score), (B) the Simple Shoulder Test (SST; 0 poorest score, 100 best score), and (C) the Oxford Shoulder Score (OSS; 0 = poorest score, 48 = best score). Error bars represent one standard deviation. Ti, titanium.
Functional outcomes of the CFR-PEEK group and the titanium group at 6 weeks, 12 weeks, and 6 months after surgery, measured using (A) the DASH score (0 best score, 100 poorest score), (B) the Simple Shoulder Test (SST; 0 poorest score, 100 best score), and (C) the Oxford Shoulder Score (OSS; 0 = poorest score, 48 = best score). Error bars represent one standard deviation. Ti, titanium.
Figure 3
Functional outcomes of the CFR-PEEK group and the titanium group at 6 weeks, 12 weeks, and 6 months after surgery, measured using (A) the DASH score (0 best score, 100 poorest score), (B) the Simple Shoulder Test (SST; 0 poorest score, 100 best score), and (C) the Oxford Shoulder Score (OSS; 0 = poorest score, 48 = best score). Error bars represent one standard deviation. Ti, titanium.
Key messages
Baseline characteristics in the two groups*1
Baseline characteristics in the two groups*1
Table 1
Baseline characteristics in the two groups*1
Humerus head–shaft angle at 2–4 days, 6 weeks, and 12 weeks after surgery
Humerus head–shaft angle at 2–4 days, 6 weeks, and 12 weeks after surgery
Table 2
Humerus head–shaft angle at 2–4 days, 6 weeks, and 12 weeks after surgery
Study procedure with follow-up time points
Study procedure with follow-up time points
eTable 1
Study procedure with follow-up time points
Functional outcome
Functional outcome
eTable 2
Functional outcome
1.Passaretti D, Candela V, Sessa P, Gumina S: Epidemiology of proximal humeral fractures: a detailed survey of 711 patients in a metropolitan area. J Shoulder Elbow Surg 2017; 26: 2117–24 CrossRef MEDLINE
2.Bell JE, Leung BC, Spratt KF, et al.: Trends and variation in incidence, surgical treatment, and repeat surgery of proximal humeral fractures in the elderly. J Bone Joint Surg Am 2011; 93: 121–31 CrossRef MEDLINE PubMed Central
3.Baron JA, Karagas M, Barrett J, et al.: Basic epidemiology of fractures of the upper and lower limb among Americans over 65 years of age. Epidemiology 1996; 7: 612–8 CrossRef MEDLINE
4.Palvanen M, Kannus P, Niemi S, Parkkari J: Update in the epidemiology of proximal humeral fractures. Clin Orthop Relat Res 2006; 442: 87–92 CrossRef MEDLINE
5.Burkhart KJ, Dietz SO, Bastian L, Thelen U, Hoffmann R, Müller LP: The treatment of proximal humeral fracture in adults. Dtsch Arztebl Int 2013; 110: 591–7 VOLLTEXT
6.Tepass A, Blumenstock G, Weise K, Rolauffs B, Bahrs C: Current strategies for the treatment of proximal humeral fractures: an analysis of a survey carried out at 348 hospitals in Germany, Austria, and Switzerland. J Shoulder Elbow Surg 2013; 22: e8–14 CrossRef MEDLINE
7.Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften: S1 Leitlinie: Oberarmkopffraktur. AWMF-Nr 012–023 18.10.2017 CrossRef
8.Schliemann B, Seifert R, Theisen C, et al.: PEEK versus titanium locking plates for proximal humerus fracture fixation: a comparative biomechanical study in two- and three-part fractures. Arch Orthop Trauma Surg 2017; 137: 63–71 CrossRef MEDLINE
9.Katthagen JC, Schwarze M, Warnhoff M, Voigt C, Hurschler C, Lill H: Influence of plate material and screw design on stiffness and ultimate load of locked plating in osteoporotic proximal humeral fractures. Injury 2016; 47: 617–24 CrossRef MEDLINE
10.Hak DJ, Fader R, Baldini T, Chadayammuri VBS: Locking screw-plate interface stability in carbon-fibre reinforced polyetheretherketone proximal humerus plates. Int Orthop 2017; 41: 1735–9 CrossRef MEDLINE
11.Padolino A, Porcellini G, Guollo B, et al.: Comparison of CFR-PEEK and conventional titanium locking plates for proximal humeral fractures: a retrospective controlled study of patient outcomes. Musculoskelet Surg 2018; 102: 49–56 CrossRef MEDLINE
12.Hertel R, Knothe U, Ballmer FT: Geometry of the proximal humerus and implications for prosthetic design. J Shoulder Elbow Surg 2002; 11: 331–8 CrossRef MEDLINE
13.Solberg BD, Moon CN, Franco DP, Paiement GD: Surgical treatment of three and four-part proximal humeral fractures. J Bone Joint Surg Am 2009; 91: 1689–97 CrossRef MEDLINE
14.Katthagen JC, Ellwein A, Lutz O, Voigt C, Lill H: Outcomes of proximal humeral fracture fixation with locked CFR-PEEK plating. Eur J Orthop Surg Traumatol 2017; 27: 351–8 CrossRef MEDLINE
15.Müller M, Mückley, T, Hofmann GO: Kosten und Komplikationen der Materialentfernung. Trauma Berufskrankh 2007; 9 (Suppl 3): p. 297 CrossRef
16.Georgiadis GM, Gove NK, Smith AD, Rodway IP: Removal of the less invasive stabilization system. J Orthop Trauma 2004; 18: 562–4 CrossRef MEDLINE
17.Ockert B, Braunstein V, Kirchhoff C, et al.: Monoaxial versus polyaxial screw insertion in angular stable plate fixation of proximal humeral fractures: radiographic analysis of a prospective randomized study. J Trauma 2010; 69: 1545–51 CrossRef MEDLINE
18.Fjalestad T, Hole MO: Displaced proximal humeral fractures: operative versus non-operative treatment—a 2-year extension of a randomized controlled trial. Eur J Orthop Surg Traumatol 2014; 24: 1067–73 CrossRef MEDLINE
19.Fjalestad T, Hole MO, Hovden IA, Blucher J, Stromsoe K: Surgical treatment with an angular stable plate for complex displaced proximal humeral fractures in elderly patients: a randomized controlled trial. J Orthop Trauma 2012; 26: 98–106 CrossRef MEDLINE
20.Olerud P, Ahrengart L, Ponzer S, Saving J, Tidermark J: Internal fixation versus nonoperative treatment of displaced 3-part proximal humeral fractures in elderly patients: a randomized controlled trial. J Shoulder Elbow Surg 2011; 20: 747–55 CrossRef MEDLINE
21.Sanders RJ, Thissen LG, Teepen JC, van Kampen A, Jaarsma RL: Locking plate versus nonsurgical treatment for proximal humeral fractures: better midterm outcome with nonsurgical treatment. J Shoulder Elbow Surg 2011; 20: 1118–24 CrossRef MEDLINE
22.Schliemann B, Siemoneit J, Theisen C, Kosters C, Weimann A, Raschke MJ: Complex fractures of the proximal humerus in the elderly—outcome and complications after locking plate fixation. Musculoskelet Surg 2012; 96 (Suppl 1): 3–11 CrossRef MEDLINE
23.Südkamp N, Bayer J, Hepp P, et al.: Open reduction and internal fixation of proximal humeral fractures with use of the locking proximal humerus plate. Results of a prospective, multicenter, observational study. J Bone Joint Surg Am 2009; 91: 1320–8 CrossRef MEDLINE
24.Brunner F, Sommer C, Bahrs C, et al.: Open reduction and internal fixation of proximal humerus fractures using a proximal humeral locked plate: a prospective multicenter analysis. J Orthop Trauma 2009; 23: 163–72 CrossRef MEDLINE
25.Jost B, Spross C, Grehn H, Gerber C: Locking plate fixation of fractures of the proximal humerus: analysis of complications, revision strategies and outcome. J Shoulder Elbow Surg 2013; 22: 542–9 CrossRef MEDLINE
26.Sproul RC, Iyengar JJ, Devcic Z, Feeley BT: A systematic review of locking plate fixation of proximal humerus fractures. Injury 2011; 42: 408–13 CrossRef MEDLINE
27.Erdogan M, Desteli EE, Imren Y, Uzturk A, Kilic M, Sezgin H: The effect of inferomedial screw on postoperative shoulder function and mechanical alignment in proximal humerus fractures. Eur J Orthop Surg Traumatol 2014; 24: 1055–9 CrossRef MEDLINE
28.Gardner MJ, Weil Y, Barker JU, Kelly BT, Helfet DL, Lorich DG: The importance of medial support in locked plating of proximal humerus fractures. J Orthop Trauma 2007; 21: 185–91 CrossRef MEDLINE
29.Ponce BA, Thompson KJ, Raghava P, et al.: The role of medial comminution and calcar restoration in varus collapse of proximal humeral fractures treated with locking plates. J Bone Joint Surg Am 2013; 95: e113 (1–7) CrossRef MEDLINE
30.Zhang L, Zheng J, Wang W, et al.: The clinical benefit of medial support screws in locking plating of proximal humerus fractures: a prospective randomized study. Int Orthop 2011; 35: 1655–61 CrossRef MEDLINE PubMed Central
31.Lill H, Hepp P, Korner J, et al.: Proximal humeral fractures: how stiff should an implant be? A comparative mechanical study with new implants in human specimens. Arch Orthop Trauma Surg 2003; 123: 74–81 CrossRef MEDLINE
32.Schliemann B, Hartensuer R, Koch T, et al.: Treatment of proximal humerus fractures with a CFR-PEEK plate: 2-year results of a prospective study and comparison to fixation with a conventional locking plate. J Shoulder Elbow Surg 2015; 24: 1282–8 CrossRef MEDLINE
33.Hirschmann MT, Fallegger B, Amsler F, Regazzoni P, Gross T: Clinical longer-term results after internal fixation of proximal humerus fractures with a locking compression plate (PHILOS). J Orthop Trauma 2011; 25: 286–93 CrossRef MEDLINE
34.Ockert B, Siebenburger G, Kettler M, Braunstein V, Mutschler W: Long-term functional outcomes (median 10 years) after locked plating for displaced fractures of the proximal humerus. J Shoulder Elbow Surg 2014; 23: 1223–31 CrossRef MEDLINE
35.Rotini R, Cavaciocchi M, Fabbri D, et al.: Proximal humeral fracture fixation: multicenter study with carbon fiber peek plate. Musculoskelet Surg 2015; 99 Suppl 1: 1–8 CrossRef MEDLINE