DÄ internationalArchive7/2020Methods for evaluating causality in observational studies

Review article

Methods for evaluating causality in observational studies

Part 27 of a series on evaluation of scientific publications

Dtsch Arztebl Int 2020; 117: 101-7. DOI: 10.3238/arztebl.2020.0101

Gianicolo, E A L; Eichler, M; Muensterer, O; Strauch, K; Blettner, M

For technical reasons, the English full text will be published approximately two weeks after the German print edition has been published.

Institut für Medizinische Biometrie, Epidemiologie und Informatik der Universitätsmedizin Mainz an der Johannes Gutenberg-Universität Mainz: Dr. rer. physiol. Emilio Antonio Luca Gianicolo, Prof. Dr. rer. nat. Konstantin Strauch, Prof. Dr. rer. nat. Maria Blettner
Institute of Clinical Physiology of the Italian National Research Council, Lecce, Italien:
Dr. rer. physiol. Emilio Antonio Luca Gianicolo
Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Medizinische Klinik und Poliklinik I, Dresden: Dr. phil. Martin Eichler
Klinik und Poliklinik für Kinderchirurgie der Universitätsmedizin Mainz an der Johannes Gutenberg-Universität Mainz: Prof. Dr. med. Oliver Muensterer
Institut für Genetische Epidemiologie, Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg; Lehrstuhl für Genetische Epidemiologie, Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Ludwig-Maximilians-Universität, München: Prof. Dr. rer. nat. Konstantin Strauch
1.Köhler D: Feinstaub und Stickstoffdioxid (NO2): Eine kritische Bewertung der aktuellen Risikodiskussion. Dtsch Arztebl 2018; 115(38): A-1645 VOLLTEXT
2.Deutsche Gesellschaft für Epidemiologie, Deutsche Gesellschaft für Medizinische Informatik Biometrie und Epidemiologie, Deutsche Gesellschaft für Public Health, Deutsche Gesellschaft für Sozialmedizin und Prävention: Offener Brief bzw. Stellungnahme auf den Webseiten der beteiligten Fachgesellschaften 2019. www.dgepi.de/assets/News/84b5207b3d/NOxFeinstaubStellungnahme2019_01_29.pdf (last accessed on 11 January 2020).
3.Hume D: An enquiry concerning human understanding. LaSalle: Open Court Press 1784.
4.Lorenz E, Köpke S, Pfaff H, Blettner M: Cluster-randomized studies—part 25 of a series on evaluating scientific publications. Dtsch Arztebl Int 2018; 115: 163–8 VOLLTEXT
5.Hill AB: The environment and disease: association or causation? Proc R Soc Med 1965; 58: 295–300 CrossRef
6.Dekkers OM: The long and winding road to causality. Eur J Epidemiol 2019; 34: 533–5 CrossRef MEDLINE PubMed Central
7.Olsen J, Jensen UJ: Causal criteria: time has come for a revision. Eur J Epidemiol 2019; 34: 537–41 CrossRef MEDLINE
8. du Prel JB, Hommel G, Röhrig B, Blettner M: Confidence interval or p-value? Part 4 of a series on evaluation of scientific publications. Dtsch Arztebl Int 2009; 106: 335–9 VOLLTEXT
9.Hammer GP, du Prel JB, Blettner M: Avoiding bias in observational studies: part 8 in a series of articles on evaluation of scientific publications. Dtsch Arztebl Int. 2009; 106: 664–8 VOLLTEXT
10.Scheidemann-Wesp U, Gianicolo EAL, Camara RJ, et al.: Ionising radiation and lens opacities in interventional physicians: results of a German pilot study. J Radiol Prot 2019; 39: 1041–59 CrossRef MEDLINE
11.Kuss O, Blettner M, Borgermann J: Propensity Score: an alternative method of analyzing treatment effects. Part 23 of a series on evaluation of scientific publications. Dtsch Arztebl Int 2016; 113: 597–603. VOLLTEXT
12.Ressing M, Blettner M, Klug SJ: Data analysis of epidemiological studies: part 11 of a series on evaluation of scientific publications. Dtsch Arztebl Int 2010; 107: 187–92 VOLLTEXT
13.Rohrig B, du Prel JB, Wachtlin D, Blettner M: Types of study in medical research: part 3 of a series on evaluation of scientific publications. Dtsch Arztebl Int 2009; 106: 262–8 VOLLTEXT
14.Rohrig B, du Prel JB, Blettner M: Study design in medical research: part 2 of a series on the evaluation of scientific publications. Dtsch Arztebl Int 2009; 106: 184–9 VOLLTEXT
15.Schneider A, Hommel G, Blettner M: Linear regression analysis: part 14 of a series on evaluation of scientific publications. Dtsch Arztebl Int 2010; 107: 776–82 VOLLTEXT
16.Hartung J, Elpelt B, Klösener KH: Statistik – Lehr- und Handbuch der angewandten Statistik. München: Oldenbourg 2005. 204–14.
17.Thistlewaite DL, Campbell DT: Regression-discontinuity analysis: an alternative to the ex-post facto experiment. J Educ Psychol 1960; 51: 309–17 CrossRef
18.Shadish W, Cook T, Campbell D: Experimental and quasi-experimental designs for generalized causal inference. Belmont, USA: Wadsworth Cengage LearningTM 2002.
19.Lee DS, Lemieux T. Regression discontinuity designs in economics. J Econ Lit 2010; 48: 281–355 CrossRef
20.Barnighausen T, Oldenburg C, Tugwell P, et al.: Quasi-experimental study designs series-paper 7: assessing the assumptions. J Clin Epidemiol 2017; 89: 53–66 CrossRef CrossRef CrossRef
21.Moscoe E, Bor J, Barnighausen T: Regression discontinuity designs are underutilized in medicine, epidemiology, and public health: a review of current and best practice. J Clin Epidemiol 2015; 68: 122–33 CrossRef MEDLINE
22.Oldenburg CE, Moscoe E, Barnighausen T: Regression discontinuity for causal effect estimation in epidemiology. Curr Epidemiol Rep 2016; 3: 233–41 CrossRef MEDLINE PubMed Central
23.Almond D, Doyle JJ, Kowalski AE, Williams H: Estimating marginal returns to medical care: evidence from at-risk newborns. Q J Econ 2010; 125: 591–634 CrossRef MEDLINE
24.Callaghan RC, Sanches M, Gatley JM, Cunningham JK: Effects of the minimum legal drinking age on alcohol-related health service use in hospital settings in Ontario: a regression-discontinuity approach. Am J Public Health 2013; 103: 2284–91 CrossRef MEDLINE PubMed Central
25.Bernal JL, Cummins S, Gasparrini A: Interrupted time series regression for the evaluation of public health interventions: a tutorial. Int J Epidemiol 2017; 46: 348–55.
26.Zhang F, Wagner AK, Ross-Degnan D: Simulation-based power calculation for designing interrupted time series analyses of health policy interventions. J Clin Epidemiol 2011; 64: 1252–61 CrossRef MEDLINE
27.Pearson T, Campbell MJ, Maheswaran R: Acute effects of aircraft noise on cardiovascular admissions – an interrupted time-series analysis of a six-day closure of London Heathrow Airport caused by volcanic ash. Spat Spatiotemporal Epidemiol 2016; 18: 38–43 CrossRef MEDLINE
28.Barone-Adesi F, Gasparrini A, Vizzini L, Merletti F, Richiardi L: Effects of Italian smoking regulation on rates of hospital admission for acute coronary events: a country-wide study. PLoS One 2011; 6: e17419 CrossRef MEDLINE PubMed Central
29.International Commission on Radiological Protection: Recommendations of the ICRP – ICRP Publication 26. Oxford: Pergamom Press 1977 (last accessed on 17 Januar 2020).
30.Bor J, Moscoe E, Mutevedzi P, Newell ML, Barnighausen T: Regression discontinuity designs in epidemiology: causal inference without randomized trials. Epidemiology 2014; 25 : 729–37 CrossRef MEDLINE PubMed Central
31.Preston DL, Kusumi S, Tomonaga M, et al.: Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res 1994; 137 (2 Suppl): 68–97 CrossRef
32.United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR: Sources, effects and risks of ionizing radiation. Report to the general assembly, with scientific annexes 2016.
33.Snow J: Cholera and the water supply in the south districts of London in 1854. J Public Health Sanit Rev 1856; 2: 239–57.
34.Parascandola M, Weed DL: Causation in epidemiology. J Epidemiol Community Health 2001; 55: 905–12 CrossRef MEDLINE PubMed Central
35.Munafo MR, Davey Smith G: Repeating experiments is not enough. Verifying results requires disparate lines of evidence – a technique called triangulation. Nature 2018; 553: 399–401 CrossRef MEDLINE
36.Hernán MA, Robins JM: Causal inference: what if. Boca Raton: Chapman & Hall/CRC 2020.
37.Pearl J, Mackenzie D: The book of why. The new science of cause and effect. New York: Penguin 2018.