DÄ internationalArchive16/2020Conservative Versus Surgical Treatment for Primary Patellar Dislocation

Original article

Conservative Versus Surgical Treatment for Primary Patellar Dislocation

A systematic review to guide risk stratification

Dtsch Arztebl Int 2020; 117: 279-86. DOI: 10.3238/arztebl.2020.0279

Frings, J; Balcarek, P; Tscholl, P; Liebensteiner, M; Dirisamer, F; Koenen, P

Background: Primary patellar dislocation is often the initial manifestation of patellofemoral instability. Its long-term consequences can include recurrent dislocation and permanent dysfunction of the knee joint. There is no consensus on the optimal treatment of primary patellar dislocation in the relevant literature. The main prerequisite for a good long-term result is a realistic assessment of the risk of recurrent dislocation.

Methods: We carried out a systematic literature search in OvidSP (a search engine for full-text databases) and MEDLINE to identify suitable stratification models with respect to the risk of recurrent dislocation.

Results: In the ten studies included in the current analysis, eight risk factors for recurrence after primary patellar dislocation were identified. Six studies revealed a higher risk in younger patients, particularly those under 16 years of age. The sex of the patient had no clear influence. In two studies, bilateral instability was identified as a risk factor. Two anatomical risk factors—a high-riding patella (patella alta) and trochlear dysplasia—were found to have the greatest influence in six studies. In a meta-analysis of five studies, patella alta predisposed to recurrent dislocation with an odds ratio (OR) of 4.259 (95% confidence interval [1.9; 9.188]). Moreover, a pathologically increased tibial tuberosity to trochlear groove (TT-TG) distance and rupture of the medial patellofemoral ligament (MPFL) on the femoral side were associated with higher recurrence rates. Patients with multiple risk factors in combination had a very high risk of recurrence.

Conclusion: The risk of recurrent dislocation after primary patellar dislocation is increased by a number of risk factors, and even more so when multiple such risk factors are present. Published stratification models enable an assessment of the individual risk profile. Patients at low risk can be managed conservatively; surgery should be considered for patients at high risk.

LNSLNS

With 6 events per 100 000 population, patellar dislocation is a common knee injury in Germany (1). Even though a considerable number of reviews comparing surgical and conservative treatment have been published, the optimal treatment for primary patellar dislocation remains the subject of controversy. While sheared-off chondral or osteochondral fragments are either surgically reattached or, if too small, removed, no consensus has so far been reached on the best strategy of treatment in patients with no such concomitant injuries (2, 3, 4, 5, 6). Recurrent episodes of patellofemoral instability are associated with a high incidence of cartilage injury (70–86%) (7, 8), considerably limiting the ability of these typically young patients to engage in an active lifestyle (9). Consequently, the aim of any treatment approach should be to prevent redislocation in the long term. The success of these interventions is largely determined by the initial patient contact.

According to current literature, conservative treatment is associated with comparatively high redislocation rates of up to 66% (4, 5). However, only limited conclusions can be drawn from most of these studies due to the heterogeneity of patient samples, failure to include relevant risk factors, and the use of different surgical techniques for comparison, some of which are obsolete (10). Against the backdrop of outdated dogmas or for lack of evidence-based alternatives, conservative treatment is often initially preferred in first-time patellar dislocation (11, 12). To estimate the risk of redislocation, various predictive risk stratification models are available which can be used to support decision making after careful analysis of existing risk factors (13, 14, 15, 16, 17). Trochlear dysplasia, patella alta, patellar tilt, and the tibial tuberosity to trochlear groove (TT-TG) distance are of particular importance here, as these conditions influence patella tracking—as do deformities of the leg axis or abnormal tibial and femoral torsion—and consequently promote instability (14, 18, 19, 20) (Figure 1). In addition, bilateral instabilities, young age, and the patient’s sex appear to influence the risk of redislocation (12). However, since most models consider only a limited number of heterogeneously defined risk factors with variable cut-off values, it is unlikely that consistent recommendations for surgeons providing the initial treatment can be derived from these models (14, 21, 22, 23).

Diagram of anatomic risk factors for patellofemoral instability
Figure 1
Diagram of anatomic risk factors for patellofemoral instability

The aim of our study was to provide evidence-based recommendations for the treatment of primary patellar dislocation based on a systematic review of the existing literature. We focused on the question which patients could benefit from conservative treatment after first-time patellar dislocation with a low risk of redislocation and in which patients primary surgical treatment should be considered because of a high risk of recurrence. We hypothesized that patients likely to benefit from conservative treatment after first-time patellar dislocation can be identified by individual risk stratification.

Methods

In order to increase transparency and minimize statistical risk of bias, the (revised) assessment of multiple systematic reviews (R-AMSTAR) criteria were applied to the search strategy (24, 25).

Search strategy and selection of studies

A systematic search of the literature was performed using OvidSP (Wolters Kluwer), a full-text database search engine, in all evidence-based medicine (EBM) databases, and in MEDLINE in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines (26). The literature published until 11 April 2019 was searched. Our search strategy is detailed in eTable 1.

Search strategy
eTable 1
Search strategy

Articles were selected based on titles, abstracts, full-text articles, and references of the included full-text articles by 2 independent authors (FJ and KP) and additional articles were identified based on discussions with experts in the field of patellofemoral instability (24, 25). Scientific articles in either English or German were eligible for inclusion. The inclusion and exclusion criteria are listed in the Box. Any discrepancies were discussed to reach a consensus. When no consensus could be achieved, a third author (BP) was consulted. The PRISMA statement was chosen for the presentation of the study selection process (27).

Inclusion and exclusion criteria
Box
Inclusion and exclusion criteria

Assessment of study quality

The methodological quality of included studies was assessed using the Methodological Index for Non-randomized Studies (MINORS) checklist (28). In the event of disagreement between the two reviewers (FJ, KP), again a third author (BP) was consulted. The Newcastle-Ottawa scale (NOS) was used to assess the risk of bias in included studies (29).

Data analysis/statistics

The redislocation rate, risk factors and related odds ratios (ORs), hazard ratios (HRs) or relative risks (RRs) of redislocation were extracted and summarized descriptively (Table 1a–c). A random effects model was calculated for the risk factor “patella alta” based on the adjusted OR from 5 OR-reporting studies (13, 14, 15, 17, 30). Further statistical analyses could not be performed for any of the other risk factors due to considerable heterogeneity both of the effect estimates and the cut-off value definitions. Statistical analyses were performed using SPSS Statistics Version 24.0.0.0 (IBM Corporation, IBM Inc., Armonk, NY, USA) and the software R (R Core Team 2019, R Foundation for Statistic Computing, Vienna, Austria). The estimators for tau^2 (method: restricted maximum likelihood) and Higgin’s l^2 were used to calculate the degree of heterogeneity in the random effects model.

Included studies: Study characteristics and analyzed risk factors
Table 1a-c
Included studies: Study characteristics and analyzed risk factors

Results

The R-AMSTAR score of this systematic review was 34/44 points. The initial search identified 185 studies. After removal of duplicates, 174 studies remained. Two further studies were identified by expert discussions; thus, altogether 176 studies were pre-selected. A further 155 studies were excluded after screening by title and abstracts, leaving 21 full-text articles to be assessed for eligibility. Of these, 10 studies were included (Figure 2).

Study selection according to PRISMA statement (<a class=27)" width="250" src="https://img.aerzteblatt.de/eyJidWNrZXQiOiJjZG4uYWVyenRlYmxhdHQuZGUiLCJrZXkiOiJiaWxkZXJcLzIwMjBcLzA2 XC9pbWcyNDM1MzU1NzguZ2lmIiwiZWRpdHMiOnsicmVzaXplIjp7ImZpdCI6Imluc2lkZSIs IndpZHRoIjoyNTB9fX0=" data-bigsrc="https://img.aerzteblatt.de/eyJidWNrZXQiOiJjZG4uYWVyenRlYmxhdHQuZGUiLCJrZXkiOiJiaWxkZXJcLzIwMjBcLzA2 XC9pbWcyNDM1MzU1NzguZ2lmIiwiZWRpdHMiOnsicmVzaXplIjp7ImZpdCI6Imluc2lkZSIs IndpZHRoIjoxNDAwfX19" data-fullurl="https://cdn.aerzteblatt.de/bilder/2020/06/img243535578.gif" />
Figure 2
Study selection according to PRISMA statement (27)

Study characteristics

Two case–control studies (13, 14), four retrospective cohort studies (16, 30, 31, 32), one prospective cohort study (17), one retrospective comparative study (22), and two retrospective case series (15, 33) were included in this review. Seven studies were of level III evidence (13, 14, 16, 17, 22, 30, 31) and three were of level IV evidence (15, 32, 33). Based on the NOS, the studies were rated with 5 to 9 of 9 possible stars, consistent with a moderate, study design–related risk of bias of the studies included (eTable 2).

Risk of bias of included studies according to Newcastle-Ottawa scale (NOS)
eTable 2
Risk of bias of included studies according to Newcastle-Ottawa scale (NOS)

Redislocation rate

The redislocation rate with conservative treatment was evaluated in all studies and ranged from 17% to 66% (13, 14, 15, 17, 22, 30, 31, 32, 33). The follow-up periods varied between 1.3 years (15) and 12.4 years (30) (Table 1a).

Risk factors for recurrent patellar dislocations

Besides demographic data, such as age and sex, mainly anatomic risk factors were identified. Table 1b shows the rates of the individual risk factors; their influence on redislocation rates is shown in Table 1c. Depending on the study cited, the risk increase was reported as OR, HR or RR.

Age

Seven of the 10 studies described patients with skeletal immaturity or young age at the time of primary patellar dislocation as risk factors for recurrence (13, 14, 15, 16, 17, 22, 30). In these studies the defined age limits varied between ≤ 16 years and <25 years. Other studies differentiated between patients with open or closed growth plates, regardless of age. Only Sanders et al. reported lower redislocation rates with decreasing age at the time of primary dislocation, in skeletally immature patients (HR 0.77) (33).

Sex

Eight studies evaluated sex as a risk factor for redislocation. Christensen et al. reported a higher redislocation risk for girls and young women compared to male patients (OR 1.5) (30). None of the studies found a significant difference between male and female patients (13, 14, 15, 16, 17, 22, 33).

Bilateral instability

Two studies investigating whether a history of contralateral dislocation represented a risk factor for redislocation found a threefold increase in the likelihood of redislocation associated with prior contralateral dislocation (14, 15).

Patella alta

The influence of patella alta on patellofemoral instability was evaluated in 8 of the 10 studies. However, there were variations among the studies in the definitions used—either as measured using the Insall-Salvati ratio (ISR) or Caton-Deschamps index (CDI)—and cut-off values (between >1.2 and ≥ 1.3 [ISR] or ≥ 1.3 and >1.45 [CDI]) for patella alta (Figure 1a). Seven studies found that patella alta was associated with a significantly increased risk of redislocation (OR ≤ 10.4/HR ≤ 10.6); only Lewallen et al. did not observe a significant increase (13, 14, 15, 17, 22, 30, 33). Statistical analysis of the 5 studies reporting ORs (13, 14, 15, 17, 30) yielded a common estimate of the OR of 4.259 with a 95% confidence interval of [1.974, 9.188] and a p-value of <0.001; however, there was considerable heterogeneity among the studies (Higgin’s I^2 = 76.51% or tau^2 = 0.5764; Figure 3).

Meta-analysis with random-effects model to analyze influence of risk factor “patella alta”;
Figure 3
Meta-analysis with random-effects model to analyze influence of risk factor “patella alta”;

Trochlear dysplasia

Trochlear dysplasia was identified in 8 studies as one of the key risk factors for patellar redislocation. Most studies used Dejour’s classification system to grade trochlear dysplasia according to morphology (14, 15, 17, 22, 30, 33). In one study, trochlear dysplasia was defined using the trochlear groove angle (the angle between the lateral and medial trochlear facets) (13). The presence of trochlear dysplasia was associated with ORs between 2.57 (16) and 18.95 (17) or an HR of 23.7 (33), in relation to the redislocation risk.

TT-TG distance

The influence of an pathologically increased tibial tuberosity to trochlear groove (TT-TG) distance on the likelihood of patellar redislocation was evaluated in 7 studies (13, 14, 17, 22, 30, 32, 33). The cut-off value beyond which the TT-TG distance was considered pathological was determined using computed tomography (CT) or magnetic resonance imaging (MRI). Definitions of this cut-off value varied between >14 mm and >20 mm. While one study reported no significant association between TT-TG distance and redislocation rate (13), the remaining studies found ORs between 1.47 (14) and 12.74 (17) or an HR of 18,7 (33) and a RR of 6.4 (32).

Location of MPFL tear

The location of the tear of the medial patellofemoral ligament (MPFL) after first-time dislocation was identified in one study as a predictor of a high redislocation rate (31). During the 7-year follow-up, 32% of all patients with femoral MPFL tear after primary patellar dislocation experienced a redislocation, while a recurrence occurred only in 9% and 0% of patients with intraligamentary and patella-side tears, respectively (31).

Discussion

In this systematic review we identified 10 studies evaluating the risk of redislocation following primary patellar dislocation, using predictive models.

The redislocation rate with conservative treatment varied among studies between 17% and 66% (13, 14, 15, 17, 22, 30, 31, 32, 33). This may be explained by the heterogeneity of the follow-up periods which varied in duration from 1.3 years (15) to 12.4 years (30).

Among young patients <18 years of age, the redislocation risk was found to be increased (13, 14, 15, 17, 30). This risk further increased considerably with decreasing age (<16 years) (OR 11.8) (14). While the state of maturity of the growth plates appeared to make no difference (16), Arendt et al. found an increased risk in patients with not yet completed longitudinal growth (OR 4,05) (13). Only Sanders et al. reported a slightly increased risk with advancing age among adolescents (HR 1.3) (33). Female sex was only associated with a slightly increased redislocation risk in 1 of 4 studies; thus, no clear conclusion can be drawn (16, 22, 30). Two studies showed an increased likelihood of ipsilateral redislocation in patients with a history of contralateral patellar dislocation (OR 3.05–3.17) (14, 15).

Most studies evaluating the risk of redislocation focused on anatomic risk factors (30).

With an ISR of ≥ 1.3 (OR 3.0/8.4) (13, 17) and >1.2 (OR 1.36) (14), respectively, or a CDI of ≥ 1.3 (OR 10.4/HR 10.6), patella alta was one of the main risk factors for redislocation (22, 30, 33). Interestingly, in MRI studies, Arendt et al. found an increased redislocation risk in patients with abnormal ISR, but not with abnormally increased CDI (13). However, measurements of patellar height using MRI are known to result in higher values compared to radiographs, with mean differences of 0.18 (CDI) and 0.11 (ISR), respectively, so that the cut-off value of the CDI in this study was possibly biased by the way the CDI was determined (34).

A second major risk factor was the presence of trochlear dysplasia, which was found to increase the risk of redislocation already in mild cases (trochlear angle >145 ° and >154 °, respectively; Dejour’s type A) (13, 14, 17, 22). Increasing severity (types B to D) was associated with a considerable increase in risk (7.21 versus OR 18.95) (17). This finding was confirmed by several studies, but with variable OR or HR (13, 16, 30, 33) which can be attributed to the high incidence of dysplastic trochleae (85% according to Dejour) (18) in conjunction with only moderate inter-rater reliability of the classification system (35). In addition, many studies with remarkably high OR or HR values did not further differentiate the corresponding subcategories (17, 30, 33).

The influence of a pathologically increased TT-TG distance has attracted considerable attention, but the cut-off values reported in the literature vary. As the result of different flexion angles of the knee in CT scans and MRI, positioning-related measuring differences can occur, for example due to tibial (external) final rotation in full extension (36). While TT-TG distances between 9.4 and 13.6 mm are considered normal for adults (37, 38), Balcarek et al. identified a TT-TG of ≥ 16 mm as a critical cut-off value (OR 1.47) (14), a finding that was indirectly confirmed by Hevesi et al. (22). The redislocation risk was found significantly increased in patients with TT-TG distances of ≥ 20 mm (OR up to 12.74 or HR of 18.7). In our opinion, this value should be the cut-off value for conservative treatment, especially if there are clinical signs of impaired patella tracking (17, 30, 33). Furthermore, the distance between the tibial tubercle and the medial border of the posterior cruciate ligament (PCL) (TT-PCL distance) has been postulated as an alternative to the TT-TG distance (36). Measurement of the TT-PCL distance is independent of any rotation in the knee joint. Furthermore, it can be of advantage in patients with conditions such as trochlear dysplasia where the trochlear groove cannot be clearly identified. A TT-PCL distance ≥ 24 mm is considered abnormal (36).

The analysis of the included literature shows that the redislocation risk cannot be assessed using isolated risk factors. On average 1.3 years after first-time dislocation, Jaquith et al. found a risk of recurrence of 56% in children with trochlear dysplasia, which further increased to 88.4% in patients with concomitant patella alta and a history of contralateral dislocation (15). Based on Patella Instability Severity (PIS) score data, Balcarek et al. found a 5-fold increased risk of redislocation when the combination of identified risk factors resulted in a score ≥ 4 (eTable 3a) (14). Similarly, the Recurrent Instability of the Patella (RIP) score can be utilized to predict the redislocation risk, with a range from 0% (0–1 points) to 80% (4–5 points) (eTable 3b) (22). Finally, Arendt et al. showed that growing children with patella alta and a trochlear groove angle ≥ 154° had a significantly higher redislocation risk (78.5%) compared to fully grown adolescents without risk factors (7.7%) (13).

Risk stratification models
eTable 3
Risk stratification models

The influence of isolated anatomic risk factors is particularly strong if they result in impaired patellofemoral kinematics (maltracking), such as in trochlear dysplasia, pathologically increased TT-TG distance, or patella alta (14, 17, 30, 33, 39). Even though prospective validation of the cited scoring systems has yet to be performed, their clinical use can already be recommended based on existing evidence. While each one of the analyzed and described scoring systems cover only a selection of all potentially relevant factors, our systematic review offers a broad evaluation of risk factors described in the literature. We found that patients >18 years of age with CDI/ISR <1.2, a TT-TG distance <16 mm and a trochlear sulcus angle <145° without contralateral patellar dislocation had the lowest likelihood of recurrence. In these patients, the risk of redislocation was 0 to 5.8% in the first year and 13.8% in children >14 years (13, 15, 16, 22). At least one anatomic risk factor is present in 90% of all first-time cases of displacement. Depending on the underlying risk factor (22), recurrence rates of 22.7% after 2 years to 0% after 10 years are found (13). In children with a single risk factor, the risk of redislocation is 30% (15).

Limitations

The levels of evidence among the included studies are generally low, since the randomized controlled trials (RCTs) reported in the literature did not meet the inclusion criteria required for our research question. Due to the heterogeneity of the definitions and cut-off values of the risk factors assessed, a meta-analysis to statistically underpin the significance of our review could only be performed for the risk factor patella alta. Furthermore, risk factors such as valgus deformity, torsional deformity, or a low lateral trochlear inclination angle (19) have not been addressed in any of the published studies.

Conclusion

Precise identification of existing risk factors is crucial for individual and risk-based counselling of patients after primary patellar dislocation. Both the PIS score and the RIP score are suitable tools for fast risk stratification. In everyday clinical practice, they can be used to plan the further treatment by broadly categorizing individual risk profiles. Patients with a low-risk profile can benefit from conservative treatment due to their low redislocation risk. In patients with a high-risk profile, primary surgical treatment should be considered in order to prevent osteochondral injuries caused by recurrent patellar dislocation over the long-term. Besides discussing with patients their respective individual risk profile in detail, it is highly recommended to involve a specialist in the field of patellofemoral instability in order to find a suitable treatment strategy.

Acknowledgement

We would like to thank Ms. Alexandra Höller, Institute of Medical Biometry and Epidemiology at the University Medical Center Hamburg-Eppendorf, for her support with the statistical analysis and creation of Figure 3. Furthermore, we would like to thank Mr. Benedikt Brozat, Department of Orthopedics, Trauma Surgery and Sports Medicine, Cologne Merheim Medical Center, for designing Figure 1.

Conflict of interest statement
PD Dr. Balcarek received lecture fees from Otto Bock, Medi, and Arthrex.

Dr. Dirisamer received consultancy fees and lecture fees from Arthrex.

The remaining authors declare that no conflict of interests exists.

Manuscript received on 14 August 2019; revised version accepted on
10 February 2020

Translated from the original German by Ralf Thoene, MD.

Corresponding author
Dr. med. Paola Koenen
Klinik für Orthopädie, Unfallchirurgie und Sporttraumatologie
Krankenhaus Köln-Merheim
Universität Witten/Herdecke
Ostmerheimer Straße 200
51109 Köln, Germany
koenenp@kliniken-koeln.de

Cite this as:
Frings J, Balcarek P, Tscholl P, Liebensteiner M, Dirisamer F, Koenen P on behalf of the AGA Knee Patellofemoral Committee: Conservative versus surgical treatment for primary patellar dislocation—a systematic review to guide risk stratification.
Dtsch Arztebl Int 2020; 117: 279–86. DOI: 10.3238/arztebl.2020.0279

Supplementary material

eTables:
www.aerzteblatt-international.de/20m0279

1.
RKI und Destatis: Gesundheit in Deutschland. Gesundheitsberichterstattung des Bundes. Berlin: Robert Koch-Institut 2017.
2.
Cheng B, Wu X, Ge H, Qing Sun Y, Zhang Q: Operative versus conservative treatment for patellar dislocation: a meta-analysis of 7 randomized controlled trials. Diagn Pathol 2014; 9: 60 CrossRef MEDLINE PubMed Central
3.
Zheng X, Kang K, Li T, Lu B, Dong J, Gao S: Surgical versus non-surgical management for primary patellar dislocations: an up-to-date meta-analysis. Eur J Orthop Surg Traumatol 2014; 24: 1513–23 CrossRef MEDLINE
4.
Hussein A, Sallam AA, Imam MA, Snow M: Surgical treatment of medial patellofemoral ligament injuries achieves better outcomes than conservative management in patients with primary patellar dislocation: a meta-analysis. JISAKOS 2017; 0: 1–7.
5.
Smith TO, Donell S, Song F, Hing CB: Surgical versus non-surgical interventions for treating patellar dislocation. Cochrane Database Syst Rev 2015; 26: CD008106 CrossRef
6.
Yao LW, Zhang C, Liu Y, et al.: Comparison operative and conservative management for primary patellar dislocation: an up-to-date meta-analysis. Eur J Orthop Surg Traumatol 2015; 25: 783–8 CrossRef MEDLINE
7.
Salonen EE, Magga T, Sillanpaa PJ, Kiekara T, Maenpaa H, Mattila VM: Traumatic patellar dislocation and cartilage injury. Am J Sports Med 2017; 45: 1376–82 CrossRef MEDLINE
8.
Frings J, Krause M, Wohlmuth P, Akoto R, Frosch KH: Influence of patient-related factors on clinical outcome of tibial tubercle transfer combined with medial patellofemoral ligament reconstruction. Knee 2018; 25: 1157–64 CrossRef MEDLINE
9.
Magnussen RA, Verlage M, Stock E, et al.: Primary patellar dislocations without surgical stabilization or recurrence: how well are these patients really doing? Knee Surg Sports Traumatol Arthrosc 2017; 25: 2352–6 CrossRef MEDLINE
10.
Christoforakis J, Bull AM, Strachan RK, Shymkiw R, Senavongse W, Amis AA: Effects of lateral retinacular release on the lateral stability of the patella. Knee Surg Sports Traumatol Arthrosc 2006; 14: 273–7 CrossRef MEDLINE
11.
Nikku R, Nietosvaara Y, Aalto K, Kallio PE: Operative treatment of primary patellar dislocation does not improve medium-term outcome: a 7-year follow-up report and risk analysis of 127 randomized patients. Acta Orthop 2005; 76: 699–704 CrossRef MEDLINE
12.
Nikku R, Nietosvaara Y, Kallio PE, Aalto K, Michelsson JE: Operative versus closed treatment of primary dislocation of the patella. Similar 2-year results in 125 randomized patients. Acta Orthop Scand 1997; 68: 419–23 CrossRef MEDLINE
13.
Arendt EA, Askenberger M, Agel J, Tompkins MA: Risk of redislocation after primary patellar dislocation: a clinical prediction model based on magnetic resonance imaging variables. Am J Sports Med 2018; 46: 3385–90 CrossRef MEDLINE
14.
Balcarek P, Oberthür S, Hopfensitz S, et al.: Which patellae are likely to redislocate? Knee Surg Sports Traumatol Arthrosc 2014; 22: 2308–14 CrossRef MEDLINE
15.
Jaquith BP, Parikh SN: Predictors of recurrent patellar instability in children and adolescents after first-time dislocation. J Pediatr Orthop 2017; 37: 484–90 CrossRef MEDLINE
16.
Lewallen LW, McIntosh AL, Dahm DL: Predictors of recurrent instability after acute patellofemoral dislocation in pediatric and adolescent patients. Am J Sports Med 2013; 41: 575–81 CrossRef MEDLINE
17.
Zhang G, Ding H, Li E, et al.: Incidence of second-time lateral patellar dislocation is associated with anatomic factors, age and injury patterns of medial patellofemoral ligament in first-time lateral patellar dislocation: a prospective magnetic resonance imaging study with 5-year fol. Knee Surg Sports Traumatol Arthroscop 2018; 27: 197–205 CrossRef MEDLINE
18.
Dejour H, Walch G, Nove-Josserand L, Guier C: Factors of patellar instability: An anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 1994; 2: 19–26 CrossRef MEDLINE
19.
Frings J, Krause M, Akoto R, Frosch KH: Clinical results after combined distal femoral osteotomy in patients with patellar maltracking and recurrent dislocations. J Knee Surg 2019; 32: 924–33 CrossRef MEDLINE
20.
Frings J, Krause M, Akoto R, Wohlmuth P, Frosch KH: Combined distal femoral osteotomy (DFO) in genu valgum leads to reliable patellar stabilization and an improvement in knee function. Knee Surg Sports Traumatol Arthrosc 2018; 26: 3572–81 CrossRef MEDLINE
21.
Askenberger M, Janarv PM, Finnbogason T, Arendt EA: Morphology and anatomic patellar instability risk factors in first-time traumatic lateral patellar dislocations: a prospective magnetic resonance imaging study in skeletally immature children. Am J Sports Med 2017; 45: 50–8 CrossRef MEDLINE
22.
Hevesi M, Heidenreich MJ, Camp CL, et al.: The recurrent instability of the patella score: a statistically based model for prediction of long-term recurrence risk after first-time dislocation. Arthroscopy 2019; 5: 537–43 CrossRef MEDLINE
23.
Parikh SN, Lykissas MG, Gkiatas I: Predicting risk of recurrent patellar dislocation. Curr Rev Musculoskelet Med 2018; 1: 253–60 CrossRef MEDLINE PubMed Central
24.
Kung J, Chiappelli F, Cajulis OO, et al.: From systematic reviews to clinical recommendations for evidence-based health care: validation of revised assessment of multiple systematic reviews (R-AMSTAR) for grading of clinical relevance. Open Dent J 2010; 4: 84–91 CrossRef MEDLINE PubMed Central
25.
Shea BJ, Grimshaw JM, Wells GA, et al.: Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol 2007; 7: 10 CrossRef MEDLINE PubMed Central
26.
Liberati A, Altman DG, Tetzlaff J, et al.: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clinical Epidemiol 2009; 62: e1–34 CrossRef MEDLINE
27.
Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097 CrossRef MEDLINE PubMed Central
28.
Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J: Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 2003; 73: 712–6 CrossRef MEDLINE
29.
Wells G, Shea B, O’Connell D, Peterson J: The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa, ON: Ottawa Hospital Research Institute 2019. www.ohri.ca/programs/clinical_epidemiology/oxford.asp (last accessed on 10 March 2020).
30.
Christensen TC, Sanders TL, Pareek A, Mohan R, Dahm DL, Krych AJ: Risk factors and time to recurrent ipsilateral and contralateral patellar dislocations. Am J Sports Med 2017; 45: 2105–10 CrossRef MEDLINE
31.
Sillanpää PJ, Peltola E, Mattila VM, Kiuru M, Visuri T, Pihlajamäki H: Femoral avulsion of the medial patellofemoral ligament after primary traumatic patellar dislocation predicts subsequent instability in men: a mean 7-year nonoperative follow-up study. Am J Sports Med 2009; 37: 1513–21 CrossRef MEDLINE
32.
Yeoh CSN, Lam KY: Tibial tubercle to trochlear groove distance and index in children with one-time versus recurrent patellar dislocation: a magnetic resonance imaging study. J Orthop Surg (Hong Kong) 2016; 24: 253–7 CrossRef MEDLINE
33.
Sanders TL, Pareek A, Hewett TE, Stuart MJ, Dahm DL, Krych AJ: High rate of recurrent patellar dislocation in skeletally immature patients: a long-term population-based study. Knee Surg Sports Traumatol Arthrosc 2018; 26: 1037–43 CrossRef MEDLINE
34.
Yue RA, Arendt EA, Tompkins MA: Patellar height measurements on radiograph and magnetic resonance imaging in patellar instability and control patients. J Knee Surg 2017; 30: 943–50 CrossRef MEDLINE
35.
Nelitz M, Lippacher S, Reichel H, Dornacher D: Evaluation of trochlear dysplasia using MRI: Correlation between the classification system of Dejour and objective parameters of trochlear dysplasia. Knee Surgery Sport Traumatol Arthrosc 2014; 22: 120–7 CrossRef MEDLINE
36.
Seitlinger G, Scheurecker G, Högler R, Labey L, Innocenti B, Hofmann S: Tibial tubercle-posterior cruciate ligament distance: a new measurement to define the position of the tibial tubercle in patients with patellar dislocation. Am J Sports Med 2012; 40: 1119–25 CrossRef MEDLINE
37.
Balcarek P, Ammon J, Frosch S, et al.: Magnetic resonance imaging characteristics of the medial patellofemoral ligament lesion in acute lateral patellar dislocations considering trochlear dysplasia, patella alta, and tibial tuberosity-trochlear groove distance. Arthroscopy 2010; 26: 926–35 CrossRef MEDLINE
38.
Schoettle PB, Zanetti M, Seifert B, Pfirrmann CWA, Fucentese SF, Romero J: The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee 2006; 13: 26–31 CrossRef MEDLINE
39.
Frosch KH, Schmeling A: A new classification system of patellar instability and patellar maltracking. Arch Orthop Trauma Surg 2016; 136: 485–97 CrossRef MEDLINE
Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany: Dr. med. Jannik Frings
ARCUS Kliniken Pforzheim, Pforzheim, Germany: PD Dr. med. Peter Balcarek
Department of Orthopedic Surgery and Musculoskeletal Trauma Care Division, HUG-Hôpitaux Universitaires Genève, Geneva, Switzerland: Dr. med. Philippe Tscholl
Department of Orthopedic Surgery, Medical University of Innsbruck, Innsbruck, Austria: Prof. PD Dr. Mag. Michael Liebensteiner, PhD
Orthopedics & Sports Medicine Linz, UMIT – Private University for Health Sciences, Medical Informatics and Technology, Hall, Austria: Dr. med. Florian Dirisamer
Department of Orthopedics, Trauma Surgery and Sports Medicine, Cologne Merheim Medical Center, University of Witten/Herdecke, Cologne, Germany: Dr. med. Paola Koenen
Inclusion and exclusion criteria
Box
Inclusion and exclusion criteria
Diagram of anatomic risk factors for patellofemoral instability
Figure 1
Diagram of anatomic risk factors for patellofemoral instability
Study selection according to PRISMA statement (27)
Figure 2
Study selection according to PRISMA statement (27)
Meta-analysis with random-effects model to analyze influence of risk factor “patella alta”;
Figure 3
Meta-analysis with random-effects model to analyze influence of risk factor “patella alta”;
Key messages
Included studies: Study characteristics and analyzed risk factors
Table 1a-c
Included studies: Study characteristics and analyzed risk factors
Search strategy
eTable 1
Search strategy
Risk of bias of included studies according to Newcastle-Ottawa scale (NOS)
eTable 2
Risk of bias of included studies according to Newcastle-Ottawa scale (NOS)
Risk stratification models
eTable 3
Risk stratification models
1.RKI und Destatis: Gesundheit in Deutschland. Gesundheitsberichterstattung des Bundes. Berlin: Robert Koch-Institut 2017.
2.Cheng B, Wu X, Ge H, Qing Sun Y, Zhang Q: Operative versus conservative treatment for patellar dislocation: a meta-analysis of 7 randomized controlled trials. Diagn Pathol 2014; 9: 60 CrossRef MEDLINE PubMed Central
3.Zheng X, Kang K, Li T, Lu B, Dong J, Gao S: Surgical versus non-surgical management for primary patellar dislocations: an up-to-date meta-analysis. Eur J Orthop Surg Traumatol 2014; 24: 1513–23 CrossRef MEDLINE
4.Hussein A, Sallam AA, Imam MA, Snow M: Surgical treatment of medial patellofemoral ligament injuries achieves better outcomes than conservative management in patients with primary patellar dislocation: a meta-analysis. JISAKOS 2017; 0: 1–7.
5.Smith TO, Donell S, Song F, Hing CB: Surgical versus non-surgical interventions for treating patellar dislocation. Cochrane Database Syst Rev 2015; 26: CD008106 CrossRef
6.Yao LW, Zhang C, Liu Y, et al.: Comparison operative and conservative management for primary patellar dislocation: an up-to-date meta-analysis. Eur J Orthop Surg Traumatol 2015; 25: 783–8 CrossRef MEDLINE
7.Salonen EE, Magga T, Sillanpaa PJ, Kiekara T, Maenpaa H, Mattila VM: Traumatic patellar dislocation and cartilage injury. Am J Sports Med 2017; 45: 1376–82 CrossRef MEDLINE
8.Frings J, Krause M, Wohlmuth P, Akoto R, Frosch KH: Influence of patient-related factors on clinical outcome of tibial tubercle transfer combined with medial patellofemoral ligament reconstruction. Knee 2018; 25: 1157–64 CrossRef MEDLINE
9.Magnussen RA, Verlage M, Stock E, et al.: Primary patellar dislocations without surgical stabilization or recurrence: how well are these patients really doing? Knee Surg Sports Traumatol Arthrosc 2017; 25: 2352–6 CrossRef MEDLINE
10.Christoforakis J, Bull AM, Strachan RK, Shymkiw R, Senavongse W, Amis AA: Effects of lateral retinacular release on the lateral stability of the patella. Knee Surg Sports Traumatol Arthrosc 2006; 14: 273–7 CrossRef MEDLINE
11.Nikku R, Nietosvaara Y, Aalto K, Kallio PE: Operative treatment of primary patellar dislocation does not improve medium-term outcome: a 7-year follow-up report and risk analysis of 127 randomized patients. Acta Orthop 2005; 76: 699–704 CrossRef MEDLINE
12.Nikku R, Nietosvaara Y, Kallio PE, Aalto K, Michelsson JE: Operative versus closed treatment of primary dislocation of the patella. Similar 2-year results in 125 randomized patients. Acta Orthop Scand 1997; 68: 419–23 CrossRef MEDLINE
13.Arendt EA, Askenberger M, Agel J, Tompkins MA: Risk of redislocation after primary patellar dislocation: a clinical prediction model based on magnetic resonance imaging variables. Am J Sports Med 2018; 46: 3385–90 CrossRef MEDLINE
14.Balcarek P, Oberthür S, Hopfensitz S, et al.: Which patellae are likely to redislocate? Knee Surg Sports Traumatol Arthrosc 2014; 22: 2308–14 CrossRef MEDLINE
15.Jaquith BP, Parikh SN: Predictors of recurrent patellar instability in children and adolescents after first-time dislocation. J Pediatr Orthop 2017; 37: 484–90 CrossRef MEDLINE
16.Lewallen LW, McIntosh AL, Dahm DL: Predictors of recurrent instability after acute patellofemoral dislocation in pediatric and adolescent patients. Am J Sports Med 2013; 41: 575–81 CrossRef MEDLINE
17.Zhang G, Ding H, Li E, et al.: Incidence of second-time lateral patellar dislocation is associated with anatomic factors, age and injury patterns of medial patellofemoral ligament in first-time lateral patellar dislocation: a prospective magnetic resonance imaging study with 5-year fol. Knee Surg Sports Traumatol Arthroscop 2018; 27: 197–205 CrossRef MEDLINE
18.Dejour H, Walch G, Nove-Josserand L, Guier C: Factors of patellar instability: An anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 1994; 2: 19–26 CrossRef MEDLINE
19.Frings J, Krause M, Akoto R, Frosch KH: Clinical results after combined distal femoral osteotomy in patients with patellar maltracking and recurrent dislocations. J Knee Surg 2019; 32: 924–33 CrossRef MEDLINE
20.Frings J, Krause M, Akoto R, Wohlmuth P, Frosch KH: Combined distal femoral osteotomy (DFO) in genu valgum leads to reliable patellar stabilization and an improvement in knee function. Knee Surg Sports Traumatol Arthrosc 2018; 26: 3572–81 CrossRef MEDLINE
21.Askenberger M, Janarv PM, Finnbogason T, Arendt EA: Morphology and anatomic patellar instability risk factors in first-time traumatic lateral patellar dislocations: a prospective magnetic resonance imaging study in skeletally immature children. Am J Sports Med 2017; 45: 50–8 CrossRef MEDLINE
22.Hevesi M, Heidenreich MJ, Camp CL, et al.: The recurrent instability of the patella score: a statistically based model for prediction of long-term recurrence risk after first-time dislocation. Arthroscopy 2019; 5: 537–43 CrossRef MEDLINE
23.Parikh SN, Lykissas MG, Gkiatas I: Predicting risk of recurrent patellar dislocation. Curr Rev Musculoskelet Med 2018; 1: 253–60 CrossRef MEDLINE PubMed Central
24.Kung J, Chiappelli F, Cajulis OO, et al.: From systematic reviews to clinical recommendations for evidence-based health care: validation of revised assessment of multiple systematic reviews (R-AMSTAR) for grading of clinical relevance. Open Dent J 2010; 4: 84–91 CrossRef MEDLINE PubMed Central
25.Shea BJ, Grimshaw JM, Wells GA, et al.: Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol 2007; 7: 10 CrossRef MEDLINE PubMed Central
26.Liberati A, Altman DG, Tetzlaff J, et al.: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clinical Epidemiol 2009; 62: e1–34 CrossRef MEDLINE
27.Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097 CrossRef MEDLINE PubMed Central
28.Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J: Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 2003; 73: 712–6 CrossRef MEDLINE
29.Wells G, Shea B, O’Connell D, Peterson J: The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa, ON: Ottawa Hospital Research Institute 2019. www.ohri.ca/programs/clinical_epidemiology/oxford.asp (last accessed on 10 March 2020).
30.Christensen TC, Sanders TL, Pareek A, Mohan R, Dahm DL, Krych AJ: Risk factors and time to recurrent ipsilateral and contralateral patellar dislocations. Am J Sports Med 2017; 45: 2105–10 CrossRef MEDLINE
31.Sillanpää PJ, Peltola E, Mattila VM, Kiuru M, Visuri T, Pihlajamäki H: Femoral avulsion of the medial patellofemoral ligament after primary traumatic patellar dislocation predicts subsequent instability in men: a mean 7-year nonoperative follow-up study. Am J Sports Med 2009; 37: 1513–21 CrossRef MEDLINE
32.Yeoh CSN, Lam KY: Tibial tubercle to trochlear groove distance and index in children with one-time versus recurrent patellar dislocation: a magnetic resonance imaging study. J Orthop Surg (Hong Kong) 2016; 24: 253–7 CrossRef MEDLINE
33.Sanders TL, Pareek A, Hewett TE, Stuart MJ, Dahm DL, Krych AJ: High rate of recurrent patellar dislocation in skeletally immature patients: a long-term population-based study. Knee Surg Sports Traumatol Arthrosc 2018; 26: 1037–43 CrossRef MEDLINE
34.Yue RA, Arendt EA, Tompkins MA: Patellar height measurements on radiograph and magnetic resonance imaging in patellar instability and control patients. J Knee Surg 2017; 30: 943–50 CrossRef MEDLINE
35.Nelitz M, Lippacher S, Reichel H, Dornacher D: Evaluation of trochlear dysplasia using MRI: Correlation between the classification system of Dejour and objective parameters of trochlear dysplasia. Knee Surgery Sport Traumatol Arthrosc 2014; 22: 120–7 CrossRef MEDLINE
36.Seitlinger G, Scheurecker G, Högler R, Labey L, Innocenti B, Hofmann S: Tibial tubercle-posterior cruciate ligament distance: a new measurement to define the position of the tibial tubercle in patients with patellar dislocation. Am J Sports Med 2012; 40: 1119–25 CrossRef MEDLINE
37.Balcarek P, Ammon J, Frosch S, et al.: Magnetic resonance imaging characteristics of the medial patellofemoral ligament lesion in acute lateral patellar dislocations considering trochlear dysplasia, patella alta, and tibial tuberosity-trochlear groove distance. Arthroscopy 2010; 26: 926–35 CrossRef MEDLINE
38.Schoettle PB, Zanetti M, Seifert B, Pfirrmann CWA, Fucentese SF, Romero J: The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee 2006; 13: 26–31 CrossRef MEDLINE
39.Frosch KH, Schmeling A: A new classification system of patellar instability and patellar maltracking. Arch Orthop Trauma Surg 2016; 136: 485–97 CrossRef MEDLINE