DÄ internationalArchive49/2017Retinal Injury Following Laser Pointer Exposure

Original article

Retinal Injury Following Laser Pointer Exposure

A Systematic Review and Case Series

Dtsch Arztebl Int 2017; 114(49): 831-7; DOI: 10.3238/arztebl.2017.0831

Birtel, J; Harmening, W M; Krohne, T U; Holz, F G; Charbel Issa, P; Herrmann, P

Background: Recent years have seen a marked increase in laser-pointer-related injuries, which sometimes involve severe retinal damage and irreversible visual impairment. These injuries are often caused by untested or incorrectly classified devices that are freely available over the Internet.

Methods: We reviewed pertinent publications retrieved by a systematic search in the PubMed and Web of Science databases and present our own series of clinical cases.

Results: We identified 48 publications describing a total of 111 patients in whom both acute and permanent damage due to laser pointers was documented. The spectrum of damage ranged from focal photoreceptor defects to macular foramina and retinal hemorrhages associated with loss of visual acuity and central scotoma. On initial presentation, the best corrected visual acuity (BCVA) was less than 20/40 (Snellen equivalent) in 55% of the affected eyes and 20/20 or better in 9% of the affected eyes. Treatment options after laser-pointer-induced ocular trauma are limited. Macular foramina and extensive hemorrhages can be treated surgically. In our series of 7 cases, we documented impaired visual acuity, central visual field defects, circumscribed and sometimes complex changes of retinal reflectivity, and intraretinal fluid. Over time, visual acuity tended to improve, and scotoma subjectively decreased in size.

Conclusion: Laser pointers can cause persistent retinal damage and visual impairment. In view of the practically unimpeded access to laser pointers (even high-performance ones) over the Internet, society at large now needs to be more aware of the danger posed by these devices, particularly to children and adolescents.

LNSLNS

Lasers have become an indispensable part of everyday life. They are used in a variety of applications in modern medicine and industry, as well as for private purposes. Due to a significant cost reduction in recent years, reasonably priced high-power laser diodes in the form of laser pointers have become available. The ease with which these can be obtained through allegedly safe online shops has also contributed to a rise in their use. However, laser pointers purchased online often prove to be untested direct imports. An increased incidence of laser pointer attacks both in public and in private has lead to greater public and scientific interest in laser pointer injury (1).

Depending on wavelength, radiation power, exposure time, localization, and spot size, laser pointers can cause extensive photothermal injury to the eye, which can lead to blindness. The retina is the primary site of injury caused by photocoagulation. The blink reflex and aversion responses are protective mechanisms against injury caused by devices with a radiation output of less than 1 mW (2). This class of laser only causes damage if the exposure time exceeds 0.25 s, which approximately corresponds to the time lag of the natural blink reflex (according to DIN EN 60825–1). However, only part of the population can be expected to have this blink reflex, meaning that these natural protective mechanisms are inadequate (3).

Although the optical radiation output of laser pointers is officially regulated (4) and tested laser pointers should not exceed a power of 1 mW (2)—which is comparatively harmless under most conditions—untested and incorrectly classified devices pose a risk of permanent retinal injury. These devices, which are usually operated with standard batteries, frequently emit light in the green spectrum at an output often significantly exceeding permitted limits (5). In addition, non-certified green laser pointers, in contrast to red laser pointers, are able to emit light at different wavelengths, including invisible infrared radiation (6).

This article presents data from a systematic literature review and describes the morphological and functional characteristics of retinal injury caused by laser pointers with prohibited power output levels in seven children. The objective of the article is to draw attention to the potential hazard posed by laser pointers and to raise awareness of these dangers among children and adolescents in particular.

Methods

Literature search strategy and inclusion/exclusion criteria

This systematic review was compiled according to the PRISMA criteria (7) and included an electronic literature search in PubMed and Web of Science up to and including January 2017 using the keywords “laser pointer retina,” “laser pointer maculopathy,” “laser pointer eye,” and “laser pointers.”

Case reports and case series reporting original clinical data on laser pointer-induced retinal injuries were included in the analysis. Anatomical or theoretical articles, as well as articles not published in German or English, were excluded. Two independent reviewers (JB, PH) identified suitable studies according to the criteria listed below on the basis of title and abstract, as well as the full text of articles where necessary.

Patients

Seven patients that presented to the Department of Ophthalmology, University of Bonn, Bonn, Germany and the Department of Ophthalmology, St. Franziskus Hospital, Münster, Germany, following laser pointer injury were included in the analysis. The diagnosis of laser-induced retinopathy was based on patient medical history and morphological changes consistent with this diagnosis.

Clinical examination and imaging

All patients underwent a standardized clinical examination and retinal imaging. Some patients underwent (micro-)perimetry, as well as fluorescein angiography or full-field electroretinography (ERG).

Results

Literature search

The systematic literature search identified a total of 48 articles that met the inclusion criteria (Figure).

PRISMA flow diagram of the literature search
PRISMA flow diagram of the literature search
Figure
PRISMA flow diagram of the literature search

Study characteristics

Of the articles included, 41 came from Europe, North America, or Australia, while seven came from the Middle East or Asia. Since 2000, there has been an increase in reported cases alongside an increase in the number of published articles. A total of 111 cases were documented (average: 2.7 patients per study, range 1–17 patients). Overall, 45 reports included follow-up, ranging from a few days to 4 years (36 cases >6 months). As far as reported, 26 patients exhibited bilateral, 32 right-sided, and 27 left-sided injury. With regard to the laser pointers reported, 51% of injuries were caused by blue, 28% by green, and 21% by red laser pointers. The radiation output power of the measured laser pointers (n = 33) ranged from less than 5 mW (n = 11) to over 1000 mW (n = 3). Upon presentation, best corrected visual acuity (BCVA) was reduced to less than 20/40 (Snellen equivalent) in 55% of eyes, 5% of eyes showed reduced visual acuity of finger counting, while BCVA was 20/20 in 9% of eyes. The reasons for this pronounced visual loss included hemorrhage and extensive injury due to prolonged exposure. Central scotoma was described in 37 patients. Fundoscopy findings included circumscribed yellowish lesions in the area of the fovea (n = 37) (812), hemorrhage (n = 16) (1216), pigment changes (hypo- and hyperpigmentation) (n = 59) (14, 1622), as well as macular hole formation (n = 26) (12, 13, 2326). Table 1 provides an overview of findings.

Visual acuity and common injury patterns following laser pointer exposure*
Visual acuity and common injury patterns following laser pointer exposure*
Table 1
Visual acuity and common injury patterns following laser pointer exposure*

High-resolution optical coherence tomography (OCT) demonstrated morphological retinal changes such as focal loss or disruption of retinal layers (8, 9, 11, 17, 18, 21, 22), macular holes (12, 13, 23, 24, 26), and cystoid changes or thickening (12, 17, 19) in all patients. Findings associated with prolonged exposure additionally showed streak lesions and, subsequently, fibrotic changes (27). ERG revealed no pathological changes (21).

A number of articles (911, 16) have reported the use of prednisolone in different strengths both topically and systemically. In the long-term follow-up (>6 months), 28 of 36 patients showed an increase in visual acuity, while other patients showed stable visual acuity. OCT revealed persistent retinal defects; no cases of full recovery have been described as of yet.

Case reports

Patient characteristics are summarized in Table 2. All children and adolescents (five boys, two girls) reported receiving a laser pointer beam in the eyes while playing and, at initial presentation, described disturbing central visual field deficits in the affected eye, which occurred immediately following laser exposure. Although these could not be quantified using conventional perimetry, they were demonstrated using Amsler grid testing and microperimetry.

Characteristics of the patients included*
Characteristics of the patients included*
Table 2
Characteristics of the patients included*

OCT imaging showed altered retinal reflectivity in all patients. Cystoid macular edema was detected in two patients by OCT. Fundoscopy revealed striking circumscribed, yellowish lesions and pigment changes; however, no bleeding was observed in the foveal region. Although anatomical changes to the inner retinal layers normalized to a large extent during the course of follow-up, lesions in the outer retina and retinal pigment epithelium persisted in all children (Figure). No patients exhibited secondary complications such as choroidal neovascularization during the follow-up period. Visual acuity increased in all patients, but the reported central visual field deficits persisted.

Funduscopy and OCT findings at initial presentation and follow-up of patient 1 (left eye) following laser pointer injury
Funduscopy and OCT findings at initial presentation and follow-up of patient 1 (left eye) following laser pointer injury
Figure A-D
Funduscopy and OCT findings at initial presentation and follow-up of patient 1 (left eye) following laser pointer injury

The laser pointers were purchased over the Internet in six cases and at a street market in one case. The optical radiation output power could be measured in five cases, all green laser pointers (central wavelength: 532–540 nm, likely generated by infrared-pumped laser diode technology). Peak values reached 32–95 mW (maximum value at a measuring time of at least 10 s) (Table 2). The radiation output power was either not given at all or labeled incorrectly on all devices.

Discussion

Laser pointer glare and retinal injuries caused by laser pointers have increased considerably in recent years and now represent a relevant problem. For example, the German Air Traffic Control (Deutsche Flugsicherung) reports more than 500 cases of laser glare to the police annually (personal communication, Ute Otterbein, German Air Traffic Control Press Office), while the US Federal Aviation Administration has documented a significant increase in glare since 2004 (2004: 46 cases, 2016: 7442 cases). However, besides the systematic documentation of incidents in aviation, a high number of unreported glare incidents and injuries can be assumed both in the public and the private setting. For example, an increasing number of case reports on laser pointer injury have been published in recent years (2005–2010: six publications, 2011–2016: 36 publications). Likewise, a growing number of children and adolescents have presented to the authors‘ hospital in recent years with retinal injury following laser pointer misuse. The frequency of these injuries points to the ease with which even high-powered laser pointers can be obtained, their frequent misrepresentation as a toy, and the lack of awareness about the hazards they pose. For example, the actual output power of the laser pointers investigated at our institution differed by as much as a hundred-fold from the power output stated on the label. In one case, the laser was correctly labeled as <200 mW, but, as such, should not have been available for sale in Germany.

Lasers, and thus also laser pointers, are classified according to the European standard DIN EN 60825–1 in the “Technical specification on lasers as or in consumer products” issued by the German Federal Institute for Occupational Safety and Health (Bundesanstalt für Arbeitsschutz und Arbeitsmedizin) (28) (Table 3), and the handling of lasers is regulated by the German Employers‘ Liability Insurance Associations. However, the legal situation appears to be inadequate in terms of the purchase and possession of laser pointers. Although only laser pointers up to laser class 2 (<1 mW) are allowed to be sold to private individuals in Germany and the distributor is obliged to provide instructions for use and correct labeling, laser pointers with significantly higher output powers or incorrectly labeled output powers are no rarity, not least due to online shops. Since laser pointers do not fall under the Weapons Act, the possession of even high-powered laser pointers is not punishable by law unless a third party is affected. Therefore, the German Radiation Protection Commission recommends that the possession and purchase of class 3B and class 4 laser pointers be regulated by law in order to prevent misuse. Due to their hazard potential, class 3B and 4 laser pointers should be classified accordingly, e.g., as weapons (29).

Laser pointer classification according to the European standard DIN EN 60825–1 (28)
Laser pointer classification according to the European standard DIN EN 60825–1 (28)
Table 3
Laser pointer classification according to the European standard DIN EN 60825–1 (28)

Laser pointer glare usually causes temporary loss of vision, which can result, e.g., in pilots‘ reduced capacity to coordinate tasks, but does not cause functional or morphological damage to the eye. In contrast, laser pointer misuse can cause irreversible retinal damage. This depends on the wavelength, radiation output power, duration of exposure, spot size of the laser, and the localization of damage (30). In principle, light can cause thermal, photomechanical, and photochemical damage to the retina. Laser pointer injuries primarily involve photothermal damage. This is more pronounced in short-wavelength light (green laser pointer; wavelength 490–575 nm) compared with long-wavelength light (red laser pointer; wavelength 635–750 nm) (19). The radiant energy absorbed by tissue causes local tissue to heat-up, which can lead to protein denaturation, loss of cell integrity, and secondary inflammatory reactions. Retinal pigment epithelium contains large amounts of melanin, which functions as a light absorber under physiological conditions and is also the largest absorber of energy in laser exposure. As such, the retinal pigment epithelium is assumed to be the site of greatest damage (31); however, the vulnerable photoreceptors located apically in its immediate vicinity are also at risk (32).

The eye‘s vulnerability to laser radiation has been evidenced by accidents in laboratories, industry, therapeutic applications, and in the military environment. The effects of laser exposure have been investigated experimentally in a monkey model (32); in humans, photocoagulation could be induced at an exposure time of less than 10 s and a power of 5 mW (20) or at a higher output and shorter exposure time (18, 33).

The morphology of retinal injuries caused by laser pointers is higly variable. Using multimodal imaging, including OCT, injuries can be detected and closely followed-up. During the acute stage and in addition to disruption of the retinal pigment epithelium, the outer retina frequently exhibits hyperreflectivity, accompanied by persistent disruption of the outer retinal layers (8, 9). Laser-induced macular holes may develop directly following exposure or in the further course (12, 26, 30, 34, 35). In some cases, these close up without intervention (26, 36). However, if macular holes persist, surgical intervention may achieve an increase in visual acuity (12, 26). Although none of our patients exhibited post-exposure retinal hemorrhage, hemorrhage has been described in different retinal layers elsewhere (1216, 37). Apart from focal retinal defects caused by laserpointer, streak-like lesions have been described as well. Whereas focal lesions often indicate accidental injury or injury caused by a third party, streak lesions can point to self-inflicted injury (27).

Possible differential diagnoses of laser pointer injuries include retinal dystrophies, as well as inflammatory and ischemic retinopathies. Zhang et al. described five patients investigated to rule out retinal dystrophy, all of whom had laser pointer-related phenocopies of retinal dystrophies (21). Even in the case of insufficient patient history, laser pointer injuries can be differentiated from genetic retinal diseases using multimodal imaging rather than genetic diagnostic testing. Laser pointer injury findings remain stable following acute damage, whereas genetic retinal diseases are characterized by bilaterality and slow progression. Furthermore, electrophysiological investigation techniques can provide the key to diagnosis.

An increase in visual acuity was observed in all our patients during the course of treatment, which is consistent with reports in the literature (10, 15, 16, 21). The clinical course of laser pointer injury is characterized by a sudden visual deterioration, followed by an increase in visual acuity over a number of weeks. However, this depends on the extent and location of retinal damage, as well as possible complications, and some patients experience long-term visual impairment (38). Even in the case of good visual acuity, damage close to the fovea and the resultant scotoma can lead to permanent impairment in everyday life

Laser pointer injury rarely leads to secondary complications. Laser-induced perforation of Bruch‘s membrane can cause secondary choroidal neovascularizations (CNV) up to years after laser pointer injury (16, 37). Experimental use has been made of this in a mouse model of CNV to study age-dependent macular degeneration (AMD) (39).

The treatment options for laser pointer injuries are limited. Systemic corticosteroids were used in differing regimes and with differing results following exposure; however, there are no clear recommendations on management as yet (9, 30). The systemic use of corticosteroids showed a protective effect in animal models (40). An experimental monkey model using methylprednisolone showed enhanced photoreceptor survival following laser injury (40). Systematic studies that demonstrate a functional improvement are challenging to design and lacking to date. Due to the generally favorable natural course, it is difficult to judge whether treatment is superior to a natural course. Although none of our patients received systemic corticosteroid treatment, a detailed discussion of this generally well tolerated treatment option should be conducted with the patient. Should CNV develop, intravitreal injection of vascular endothelial growth factor (VEGF) inhibitors is indicated (16).

In summary, powerful laser pointers pose a considerable hazard to the eye, and injury can be diagnosed using multimodal imaging and followed-up in the long term. Even if most retinal injury is partially reversible, surgical intervention involving pars plana vitrectomy may be necessary in some cases. Persistent retinal damage is evident on the retina and functional impairment may persist for a prolonged period of time. In addition to potential governmental regulatory measures, public awareness of laser pointer injuries needs to be heightened. Physicians from a variety of disciplines can make a valuable contribution in this regard.

Acknowledgments
Our sincere thanks go to Dr. Georg Spital and Dr. Benedikt Book at the Department of Ophthalmology, St. Franziskus Hospital, Münster, Germany, for providing two patient cases involving laser pointer injuries. We would also like to thank them for their well-founded input during the revision of the manuscript.

We would also like to thank Niklas Domdei at the Department of Ophthalmology, University of Bonn, Bonn, Germany for measuring the laser pointers.

Conflict of interests

The authors state that they have no conflict of interest.

Manuscript received on 20 April 2017, revised version accepted

on 5 September 2017.

Translated from the original German by Christine Schaefer-Tsorpatzidis.

Corresponding author
Dr. med. Philipp Herrmann, PhD
Universitäts-Augenklinik Bonn
Rheinische Friedrich-Wilhelms-Universität Bonn
Ernst-Abbe-Straße 2, 53127 Bonn
philipp.herrmann@ukbonn.de

1.
Houston S: Aircrew exposure to handheld laser pointers: the potential for retinal damage. Aviat Space Environ Med 2011; 82: 921–2 CrossRef
2.
Bundesanstalt für Arbeitsschutz und Arbeitsmedizin: Technische Spezifikation zu Lasern als bzw. in Verbraucherprodukte(n). 2014. www.baua.de/DE/Themen/Anwendungssichere-Chemikalien-und-Produkte/Produktsicherheit/Laserprodukte/pdf/Technische-Spezifikation-Laser.html (last accessed on 2 November 2017).
3.
Reidenbach HD, Hofmann J, Dollinger K, Ott G: Abwendungsreaktionen des Menschen gegenüber sichtbarer Laserstrahlung. Schriftreihe der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin 2006; Bremerhaven: Wirtschaftsverlag NW. 2006.
4.
International Electrotechnical Commission: Safety of laser products: part 1—equipment classification and requirements. IEC; 2014: 60825–1.
5.
Ajudua S, Mello MJ: Shedding some light on laser pointer eye injuries. Pediatr Emerg Care 2007; 23: 669–72 CrossRef MEDLINE
6.
Hadler J Tobares EL, Dowell M: Random testing reveals excessive power in commercial laser pointers. J Laser Appl 2013; 25: 032007 CrossRef
7.
Moher D, Liberati A, Tetzlaff J, Altman DG: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009; 339: b2535 CrossRef MEDLINE PubMed Central
8.
Lally DR, Duker JS: Foveal injury from a red laser pointer. JAMA Ophthalmol 2014; 132: 297 CrossRef MEDLINE
9.
Hossein M, Bonyadi J, Soheilian R, Soheilian M, Peyman GA: SD-OCT features of laser pointer maculopathy before and after systemic corticosteroid therapy. Ophthalmic Surg Lasers Imaging 2011; 42 Online: e135–8.
10.
Dirani A, Chelala E, Fadlallah A, Antonios R, Cherfan G: Bilateral macular injury from a green laser pointer. Clin Ophthalmol 2013; 7: 2127–30 MEDLINE PubMed Central
11.
Hohberger B, Bergua A: Selbst verursachte laserinduzierte Makulopathie im Jugendalter. Ophthalmologe 2017; 114: 259 CrossRef MEDLINE
12.
Alsulaiman SM, Alrushood AA, Almasaud J, et al.: High-power handheld blue laser-induced maculopathy: the results of the King Khaled Eye Specialist Hospital Collaborative Retina Study Group. Ophthalmology 2014; 121: 566–72 e1.
13.
Shenoy R, Bialasiewicz AA, Bandara A, Isaac R: Retinal damage from laser pointer misuse—case series from the military sector in Oman. Middle East Afr J Ophthalmol 2015; 22: 399–403 CrossRef MEDLINE PubMed Central
14.
Wyrsch S, Baenninger PB, Schmid MK: Retinal injuries from a handheld laser pointer. N Engl J Med 2010; 363: 1089–91 CrossRef MEDLINE
15.
Kandari JA, Raizada S, Razzak AA: Accidental laser injury to the eye. Ophthalmic Surg Lasers Imaging 2010: 1–5 CrossRef
16.
Xu K, Chin EK, Quiram PA, Davies JB, Parke DW, Almeida DR: Retinal injury secondary to laser pointers in pediatric patients. Pediatrics 2016; 138; pii: e20161188 CrossRef MEDLINE
17.
Turaka K, Bryan JS, Gordon AJ, Reddy R, Kwong HM, Sell CH: Laser pointer induced macular damage: case report and mini review. Int Ophthalmol 2012; 32: 293–7 CrossRef MEDLINE
18.
Ziahosseini K, Doris JP, Turner GS: Laser eye injuries. Maculopathy from handheld green diode laser pointer. BMJ 2010; 340: c2982 CrossRef MEDLINE
19.
Robertson DM, McLaren JW, Salomao DR, Link TP: Retinopathy from a green laser pointer: a clinicopathologic study. Arch Ophthalmol 2005; 123: 629–33 CrossRef MEDLINE
20.
Luttrull JK, Hallisey J: Laser pointer-induced macular injury. Am J Ophthalmol 1999; 127: 95–6 CrossRef
21.
Zhang L, Zheng A, Nie H, et al.: Laser-induced photic injury phenocopies macular dystrophy. Ophthalmic Genet 2016; 37: 59–67 CrossRef MEDLINE PubMed Central
22.
Thanos S, Bohm MR, Meyer zu Horste M, Schmidt PF: Retinal damage induced by mirror-reflected light from a laser pointer. BMJ Case Rep 2015; pii: bcr2015210311 CrossRef MEDLINE PubMed Central
23.
Petrou P, Patwary S, Banerjee PJ, Kirkby GR: Bilateral macular hole from a handheld laser pointer. Lancet 2014; 383: 1780 CrossRef
24.
Dhoot DS, Xu D, Srivastava S: High-powered laser pointer injury resulting in macular hole formation. J Pediatr 2014; 164: 668 e1.
25.
Simonett JM, Scarinci F, Labriola LT, Jampol LM, Goldstein DA, Fawzi AA:
A case of recurrent, self-inflicted handheld laser retinopathy. J AAPOS 2016; 20: 168–70 CrossRef MEDLINE
26.
Alsulaiman SM, Alrushood AA, Almasaud J, et al.: Full-thickness macular hole secondary to high-power handheld blue laser: natural history and management outcomes. Am J Ophthalmol 2015; 160: 107–13 e1.
27.
Bhavsar KV, Wilson D, Margolis R, et al.: Multimodal imaging in handheld laser-induced maculopathy. Am J Ophthalmol 2014; 159: 227–31 CrossRef MEDLINE
28.
Berufsgenossenschaft der Feinmechanik und Elektrotechnik: Betrieb von Lasereinrichtungen. Anwendung der Unfallverhütungsvorschrift „Laserstrahlung“ BGV B2 auf neue Laserklassen und MZB-Werte nach DIN EN 60 825–1 (VDE 0837–1): 2001–11.
29.
Strahlenschutzkommission: Blendattacken durch Laser. Empfehlung der Strahlenschutzkommission. 246 Sitzung der Strahlenschutzkommission am 02/03 Dezember 2010. www.ssk.de/SharedDocs/Beratungsergebnisse_PDF/2010/2010_12.pdf?__blob=publicationFile (last accessed on 25 September 2017).
30.
Barkana Y, Belkin M: Laser eye injuries. Surv Ophthalmol 2000; 44: 459–78 CrossRef
31.
Hunter JJ, Morgan JI, Merigan WH, Sliney DH, Sparrow JR, Williams DR: The susceptibility of the retina to photochemical damage from visible light. Prog Retin Eye Res 2012; 31: 28–42 CrossRef MEDLINE PubMed Central
32.
Marshall J, Hamilton AM, Bird AC: Histopathology of ruby and argon laser lesions in monkey and human retina. A comparative study. Br J Ophthalmol 1975; 59: 610–30 CrossRef MEDLINE PubMed Central
33.
Ueda T, Kurihara I, Koide R: A case of retinal light damage by green laser pointer (Class 3b). Jpn J Ophthalmol 2011; 55: 428–30 CrossRef MEDLINE
34.
Bernstein PS, Steffensmeier A: Optical coherence tomography before and after repair of a macular hole induced by an unintentional argon laser burn. Arch Ophthalmol 2005; 123: 404–5 CrossRef MEDLINE
35.
Mainster MA, Stuck BE, Brown J: Assessment of alleged retinal laser injuries. Arch Ophthalmol 2004; 122: 1210–7 CrossRef MEDLINE
36.
Thach AB, Lopez PF, Snady-McCoy LC, Golub BM, Frambach DA: Accidental Nd: YAG laser injuries to the macula. Am J Ophthalmol 1995; 119: 767–73 CrossRef
37.
Fujinami K, Yokoi T, Hiraoka M, Nishina S, Azuma N: Choroidal neovascularization in a child following laser pointer-induced macular injury. Jpn J Ophthalmol 2010; 54: 631–3 CrossRef MEDLINE
38.
Sethi CS, Grey RH, Hart CD: Laser pointers revisited: a survey of 14 patients attending casualty at the Bristol Eye Hospital. Br J Ophthalmol 1999; 83: 1164–7 CrossRef
39.
Lambert V, Lecomte J, Hansen S, et al.: Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat Protoc 2013; 8: 2197–211 CrossRef MEDLINE
40.
Brown J, Hacker H, Schuschereba ST, Zwick H, Lund DJ, Stuck BE: Steroidal and nonsteroidal antiinflammatory medications can improve photoreceptor survival after laser retinal photocoagulation. Ophthalmology 2007; 114: 1876–83 CrossRef MEDLINE
Department of Ophthalmology, University of Bonn, Bonn, Germany: Dr. med. Birtel, Dr. rer. nat. Harmening,
Prof. Dr. med. Krohne, Prof. Dr. med. Holz, Dr. med. Herrmann, PhD
Oxford Eye Hospital and Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford: Prof. Dr. med. Charbel Issa, DPhil
PRISMA flow diagram of the literature search
PRISMA flow diagram of the literature search
Figure
PRISMA flow diagram of the literature search
Funduscopy and OCT findings at initial presentation and follow-up of patient 1 (left eye) following laser pointer injury
Funduscopy and OCT findings at initial presentation and follow-up of patient 1 (left eye) following laser pointer injury
Figure A-D
Funduscopy and OCT findings at initial presentation and follow-up of patient 1 (left eye) following laser pointer injury
Key messages
Visual acuity and common injury patterns following laser pointer exposure*
Visual acuity and common injury patterns following laser pointer exposure*
Table 1
Visual acuity and common injury patterns following laser pointer exposure*
Characteristics of the patients included*
Characteristics of the patients included*
Table 2
Characteristics of the patients included*
Laser pointer classification according to the European standard DIN EN 60825–1 (28)
Laser pointer classification according to the European standard DIN EN 60825–1 (28)
Table 3
Laser pointer classification according to the European standard DIN EN 60825–1 (28)
1.Houston S: Aircrew exposure to handheld laser pointers: the potential for retinal damage. Aviat Space Environ Med 2011; 82: 921–2 CrossRef
2.Bundesanstalt für Arbeitsschutz und Arbeitsmedizin: Technische Spezifikation zu Lasern als bzw. in Verbraucherprodukte(n). 2014. www.baua.de/DE/Themen/Anwendungssichere-Chemikalien-und-Produkte/Produktsicherheit/Laserprodukte/pdf/Technische-Spezifikation-Laser.html (last accessed on 2 November 2017).
3.Reidenbach HD, Hofmann J, Dollinger K, Ott G: Abwendungsreaktionen des Menschen gegenüber sichtbarer Laserstrahlung. Schriftreihe der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin 2006; Bremerhaven: Wirtschaftsverlag NW. 2006.
4.International Electrotechnical Commission: Safety of laser products: part 1—equipment classification and requirements. IEC; 2014: 60825–1.
5.Ajudua S, Mello MJ: Shedding some light on laser pointer eye injuries. Pediatr Emerg Care 2007; 23: 669–72 CrossRef MEDLINE
6.Hadler J Tobares EL, Dowell M: Random testing reveals excessive power in commercial laser pointers. J Laser Appl 2013; 25: 032007 CrossRef
7.Moher D, Liberati A, Tetzlaff J, Altman DG: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009; 339: b2535 CrossRef MEDLINE PubMed Central
8.Lally DR, Duker JS: Foveal injury from a red laser pointer. JAMA Ophthalmol 2014; 132: 297 CrossRef MEDLINE
9.Hossein M, Bonyadi J, Soheilian R, Soheilian M, Peyman GA: SD-OCT features of laser pointer maculopathy before and after systemic corticosteroid therapy. Ophthalmic Surg Lasers Imaging 2011; 42 Online: e135–8.
10.Dirani A, Chelala E, Fadlallah A, Antonios R, Cherfan G: Bilateral macular injury from a green laser pointer. Clin Ophthalmol 2013; 7: 2127–30 MEDLINE PubMed Central
11.Hohberger B, Bergua A: Selbst verursachte laserinduzierte Makulopathie im Jugendalter. Ophthalmologe 2017; 114: 259 CrossRef MEDLINE
12.Alsulaiman SM, Alrushood AA, Almasaud J, et al.: High-power handheld blue laser-induced maculopathy: the results of the King Khaled Eye Specialist Hospital Collaborative Retina Study Group. Ophthalmology 2014; 121: 566–72 e1.
13.Shenoy R, Bialasiewicz AA, Bandara A, Isaac R: Retinal damage from laser pointer misuse—case series from the military sector in Oman. Middle East Afr J Ophthalmol 2015; 22: 399–403 CrossRef MEDLINE PubMed Central
14.Wyrsch S, Baenninger PB, Schmid MK: Retinal injuries from a handheld laser pointer. N Engl J Med 2010; 363: 1089–91 CrossRef MEDLINE
15.Kandari JA, Raizada S, Razzak AA: Accidental laser injury to the eye. Ophthalmic Surg Lasers Imaging 2010: 1–5 CrossRef
16.Xu K, Chin EK, Quiram PA, Davies JB, Parke DW, Almeida DR: Retinal injury secondary to laser pointers in pediatric patients. Pediatrics 2016; 138; pii: e20161188 CrossRef MEDLINE
17.Turaka K, Bryan JS, Gordon AJ, Reddy R, Kwong HM, Sell CH: Laser pointer induced macular damage: case report and mini review. Int Ophthalmol 2012; 32: 293–7 CrossRef MEDLINE
18.Ziahosseini K, Doris JP, Turner GS: Laser eye injuries. Maculopathy from handheld green diode laser pointer. BMJ 2010; 340: c2982 CrossRef MEDLINE
19.Robertson DM, McLaren JW, Salomao DR, Link TP: Retinopathy from a green laser pointer: a clinicopathologic study. Arch Ophthalmol 2005; 123: 629–33 CrossRef MEDLINE
20.Luttrull JK, Hallisey J: Laser pointer-induced macular injury. Am J Ophthalmol 1999; 127: 95–6 CrossRef
21.Zhang L, Zheng A, Nie H, et al.: Laser-induced photic injury phenocopies macular dystrophy. Ophthalmic Genet 2016; 37: 59–67 CrossRef MEDLINE PubMed Central
22.Thanos S, Bohm MR, Meyer zu Horste M, Schmidt PF: Retinal damage induced by mirror-reflected light from a laser pointer. BMJ Case Rep 2015; pii: bcr2015210311 CrossRef MEDLINE PubMed Central
23.Petrou P, Patwary S, Banerjee PJ, Kirkby GR: Bilateral macular hole from a handheld laser pointer. Lancet 2014; 383: 1780 CrossRef
24.Dhoot DS, Xu D, Srivastava S: High-powered laser pointer injury resulting in macular hole formation. J Pediatr 2014; 164: 668 e1.
25.Simonett JM, Scarinci F, Labriola LT, Jampol LM, Goldstein DA, Fawzi AA:
A case of recurrent, self-inflicted handheld laser retinopathy. J AAPOS 2016; 20: 168–70 CrossRef MEDLINE
26.Alsulaiman SM, Alrushood AA, Almasaud J, et al.: Full-thickness macular hole secondary to high-power handheld blue laser: natural history and management outcomes. Am J Ophthalmol 2015; 160: 107–13 e1.
27.Bhavsar KV, Wilson D, Margolis R, et al.: Multimodal imaging in handheld laser-induced maculopathy. Am J Ophthalmol 2014; 159: 227–31 CrossRef MEDLINE
28.Berufsgenossenschaft der Feinmechanik und Elektrotechnik: Betrieb von Lasereinrichtungen. Anwendung der Unfallverhütungsvorschrift „Laserstrahlung“ BGV B2 auf neue Laserklassen und MZB-Werte nach DIN EN 60 825–1 (VDE 0837–1): 2001–11.
29.Strahlenschutzkommission: Blendattacken durch Laser. Empfehlung der Strahlenschutzkommission. 246 Sitzung der Strahlenschutzkommission am 02/03 Dezember 2010. www.ssk.de/SharedDocs/Beratungsergebnisse_PDF/2010/2010_12.pdf?__blob=publicationFile (last accessed on 25 September 2017).
30.Barkana Y, Belkin M: Laser eye injuries. Surv Ophthalmol 2000; 44: 459–78 CrossRef
31.Hunter JJ, Morgan JI, Merigan WH, Sliney DH, Sparrow JR, Williams DR: The susceptibility of the retina to photochemical damage from visible light. Prog Retin Eye Res 2012; 31: 28–42 CrossRef MEDLINE PubMed Central
32.Marshall J, Hamilton AM, Bird AC: Histopathology of ruby and argon laser lesions in monkey and human retina. A comparative study. Br J Ophthalmol 1975; 59: 610–30 CrossRef MEDLINE PubMed Central
33.Ueda T, Kurihara I, Koide R: A case of retinal light damage by green laser pointer (Class 3b). Jpn J Ophthalmol 2011; 55: 428–30 CrossRef MEDLINE
34.Bernstein PS, Steffensmeier A: Optical coherence tomography before and after repair of a macular hole induced by an unintentional argon laser burn. Arch Ophthalmol 2005; 123: 404–5 CrossRef MEDLINE
35.Mainster MA, Stuck BE, Brown J: Assessment of alleged retinal laser injuries. Arch Ophthalmol 2004; 122: 1210–7 CrossRef MEDLINE
36.Thach AB, Lopez PF, Snady-McCoy LC, Golub BM, Frambach DA: Accidental Nd: YAG laser injuries to the macula. Am J Ophthalmol 1995; 119: 767–73 CrossRef
37.Fujinami K, Yokoi T, Hiraoka M, Nishina S, Azuma N: Choroidal neovascularization in a child following laser pointer-induced macular injury. Jpn J Ophthalmol 2010; 54: 631–3 CrossRef MEDLINE
38.Sethi CS, Grey RH, Hart CD: Laser pointers revisited: a survey of 14 patients attending casualty at the Bristol Eye Hospital. Br J Ophthalmol 1999; 83: 1164–7 CrossRef
39.Lambert V, Lecomte J, Hansen S, et al.: Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat Protoc 2013; 8: 2197–211 CrossRef MEDLINE
40.Brown J, Hacker H, Schuschereba ST, Zwick H, Lund DJ, Stuck BE: Steroidal and nonsteroidal antiinflammatory medications can improve photoreceptor survival after laser retinal photocoagulation. Ophthalmology 2007; 114: 1876–83 CrossRef MEDLINE