DÄ internationalArchive11/2021Sport and Venous Thromboembolism

Review article

Sport and Venous Thromboembolism

Site, Accompanying Features, Symptoms, and Diagnosis

Dtsch Arztebl Int 2021; 118: 181-7. DOI: 10.3238/arztebl.m2021.0021

Hilberg, T; Ransmann, P; Hagedorn, T

Background: The occurrence of venous thromboembolisms (VTE) in association with sporting activity has been described but not yet systematically explored. The aim of this study was to determine the sites at which VTE occur in athletes, the accompanying features, and the special features of the symptoms and diagnosis, so that physicians can take the findings into consideration.

Methods: A search of the literature in the databases PubMed, Web of Science, and Cochrane in accordance with the PRISMA criteria, together with a search of Google Scholar up to 29 February 2020.

Results: No observational studies were identified. A total of 154 case descriptions were evaluated: 89 on upper-extremity deep vein thrombosis (DVT), 53 on lower-extremity DVT, and 12 on pulmonary embolisms with no evidence of thrombosis. Ninety-five percent of the upper-extremity DVT involved the region of the subclavian/axillary vein. Thoracic outlet syndrome (38%), hereditary thrombophilia/a family history of VTE (16%), intensive training (12%), and the use of oral contraceptives (7%) were identified as accompanying features. The upper-extremity DVT occurred mainly in male strength athletes and ball sports players. The lower-extremity DVT were located in the lower leg/knee (30%), the thigh (19 %), or occurred in combination in the lower leg–to-pelvis region (30 %). The features accompanying lower-extremity DVT were hereditary thrombophilia/a family history of VTE (30%), trauma (25%), immobilization (21%), and the use of oral contraceptives (11%). The lower-extremity DVT were found in endurance sports and ball sports. The symptoms may be obscured by sport-specific symptoms/trauma, and diagnosis is often delayed. Early D-dimer determination is useful and is complemented by diagnostic imaging.

Conclusion: VTE are found in association with sports. The background factors, the sites of VTE, the types of sports involved, and the accompanying features are all important to know. The symptoms may be obscured, and it may be difficult to reach the correct diagnosis. The possible presence of DVT must be borne in mind.

LNSLNS

Venous thromboembolism (VTE) is a vascular occlusion of a blood clot in deep veins (deep vein thrombosis; DVT) or of an embolism (usually) in the pulmonary artery (pulmonary embolism; PE) and has an average incidence rate of around 100 to 200 per 100 000 person-years in the general population (1).

In the development of a VTE, hereditary risk factors, age, anatomical causes, the sex of the person, and use of oral contraceptives play a role independent of sports (2). Trauma, intense physical stress, dehydration, and prolonged periods of immobilization due to sports injuries/long-haul travel can be induced by, or associated with, sports (3). Since immobilization, physical activity, and sports can influence the development of VTE, the site of VTE / accompanying factors and symptoms / diagnosis of a VTE in the context of sports and types of exercise are examined here.

Immobilization is a well-known cause of VTE (4). In the study by Samama et al. (4), the odds ratio was increased by about 5- to 6-fold with immobilization due to bed confinement, and in Roach et al. (5), it was increased by 7- to 9-fold within a narrow time around hospitalization. Notably, it is often assumed that physical activity always has antithrombotic properties. However, whether this is really the case is still a matter of debate. While some studies have shown that physical activity is associated with a reduced risk of VTE (6, 7), others have showed it to be associated with an increased risk (8, 9). Borch et al. (10) examined 26 490 people between the ages of 25 and 97 as part of the Tromsø study and could not demonstrate that moderate physical activity had any influence on VTE risk. Van Stralen et al. showed a reduced risk of VTE for participants in sports activities (11), but an increased risk for >65-year-olds who do strenuous exercise (such as jogging) in 2008 (8). The positive influences of physical activity on the venous system are determined by activity and overall situation. Depending on duration / intensity, physical activity leads to an increases in factor VIII activity (12) and the von Willebrand factor (vWF) (13), to shortening of the activated partial thromboplastin time (aPTT) (14, 15), and to increases in platelet count and platelet activity / reactivity (16, 17, 18). For fibrinolysis, the tissue-specific plasminogen activator (tPA) activity is increased as a compensatory measure, while the plasminogen activator inhibitor-1 (PAI-1) activity is decreased (14, 19). With respect to duration, changes in plasmatic blood coagulation can be detected for up to one day and last much longer than changes in ​​fibrinolysis (20, 21). These changes are influenced by additional alterations, for example hereditary thrombophilia. These occur in a comparable prevalence among high-performance athletes (22). Activated protein C (APC) resistance does not lead to an increased coagulation reaction; however, there are indications that a protein C deficiency or an antiphospholipid syndrome increases the pro-coagulatory potential (23, 24), and that the protein C system can be influenced by physical activity (25). Endurance training modifies the response of the hemostasis system, and comparable changes in coagulation in participants of endurance training are only achieved at greater levels of energy expenditure (26). In summary, the positive effects of physical activity seem to outweigh the negative effects on a net basis, but not in a direct dose relationship, especially with regard to the intensity of exercise (27). Although there is no clear database, a comparable prevalence of thrombosis in active and sedentary people is assumed (3). VTEs associated with sporting activities are often described as case studies.

This study aimed to answer the following questions:

  • Which types of sporting activities are associated with VTE? At which sites, and with which accompanying factors, do VTE occur?
  • What special features should be taken into account with respect to symptoms or diagnostics in VTEs associated to sporting activities?

Methods

A literature search was conducted following the criteria of the PRISMA statement (e1) (Figure). Using the language filter “English/German”, the PubMed / Web-of-Science and Cochrane databases were searched (from the start of database records to 29 February 2020) using the key words: (“venous thrombosis” OR “venous thromboembolism” OR “vein thrombosis” OR “phlebothrombosis” OR “pulmonary embolism”) AND (“exercise” OR “physical activity” OR “sports” OR “athlete”). The search was supplemented by Google Scholar. Thrombophlebitis was not taken into account.

A flow diagram for selection of literature in accordance with the PRISMA statement
Figure
A flow diagram for selection of literature in accordance with the PRISMA statement

All authors first screened the titles and abstracts and then subsequently the full texts. Hits were evaluated according to the PICo scheme (e2) (participants/population: patients with thrombosis; interest: conditions under which thrombosis occurs; context: active sporting activity) for qualitative studies. A total of 1282 literature references were detected, of which 1042 were excluded as they did not meet the inclusion criteria with respect to title/abstract or were duplicates. Sixty-three papers were analyzed again by the authors, of which 34 were excluded. The resulting 206 literature references were checked again with respect to bibliography, and a further 17 relevant literature references were detected. Finally, 37 full texts did not meet the inclusion criteria, so that 186 full texts were included in the study.

Results

VTE and sport—site and accompanying factors

Based on the systematic literature search, we detected 154 case studies. Of these, 89 DVT affected the upper extremities, and 53, the lower extremities; in twelve cases, pulmonary embolism (PE) occurred with no evidence of thrombosis. As the thromboses presented differently with respect to type of sport, accompanying factors, etc., the studies on upper-extremity DVT, lower-extremity DVT, and PE with no evidence of thrombosis were analyzed separately. Individual cases in the literature, such as sinus-, ophthalmic-, or portal vein thrombosis, were not thematically followed up (e3 – e12).

Upper-extremity DVT (N = 89)

An overview of upper-extremity DVT is shown in Table 1. Significant sport types come from strength / ball sports, with a total of 63% of cases. DVT was particularly common in weightlifters / baseball players. The age range was between 14 and 29 years, but cases were also detected in the fourth and fifth decades of life. Males are affected more often. In more than 95% of the cases, the axillary–subclavian veins were detected as the central region. A major cause of upper-extremity DVT of the was anatomical constrictions of a thoracic outlet syndrome (TOS) (38%). These structural changes can cause Paget-Schroetter syndrome. Anatomically, this problem can be explained by constrictions between the scalene muscles and the first rib (e.g., the cervical rib or hypertrophy of the anterior scalene muscle in weight lifters), between the first rib and the clavicle (e.g., after a clavicle fracture with callus formation), or in the subcoracoid space between the coracoid process and tendon of the pectoralis minor muscle (e.g., hypertrophy in swimmers) (28, 29, e22). Although the cause of the constriction was not always proven, surgical decompression was still carried out in some cases. In individual cases, the structural narrowness in the costoclavicular space and adjacent to the subclavian muscle was also demonstrated by imaging (e21, e24, e47, e78). In the case of excessive muscle hypertrophy, the use of anabolic agents should also be considered (e82).

Upper-extremity deep vein thrombosis
Table 1
Upper-extremity deep vein thrombosis

Hereditary thrombophilia / a family history of VTE (16%) can occur, but less frequently than cases with anatomical changes. In 12% of the cases, intensive training was an influencing factor. The combination of weight training, TOS, and intensive training intensifies the individual effect. Additional acquired risk factors, such as oral contraceptives (7% total/27% of women), were also evaluated. According to the literature, however, women are less affected.

PEs have also been described, some of which were fatal. The symptoms cited as post-thrombotic syndrome were pain, swelling, heaviness, reduced resilience, and sensitivity disorders of the arm (e15, e26, e39, e69, e72, e80, e81). However, no uniform classification of the post-thrombotic syndrome is currently available (30). Return-to-sport at a potentially high-performance level is also rarely discussed. In the few cases for which information was available, the original physical activity was only resumed after weeks or months —if at all (e33, e41, e79).

Lower-extremity DVT (N = 53)

Fifty-three case studies of lower-extremity DVT were included (Table 2). These related primarily to endurance sports (45%) and ball sports (40%). Weight training plays a subordinate role here; the patients in most of the case studies often practiced selected sports, such as running and marathons (25%). The age range was between 15 and 29 years, and males (79%) were more severely affected. The sites of occurrence were divided roughly into the regions of lower leg / knee and thigh / pelvis; in 30% of the cases, combinations of the lower leg up to the pelvis could be detected. Hereditary thrombophilia/a family history of VTE (30%) were detected as accompanying factors. Trauma was often given as an accompanying circumstance (25%).

Deep vein thrombosis (DVT) of the lower extremities
Table 2
Deep vein thrombosis (DVT) of the lower extremities

Immobilization was detected in 21% of the cases. A flight or car trip played a role for a total of seven patients; these may well be sports-related. Unfortunately, no assessment about either the influence of dehydration alone (3), or about a combination of dehydration/prolonged inactivity due to travel, can be drawn from the data. The use of oral contraceptives (11% in total) was listed in six of the nine affected female athletes. Anatomical changes such as May-Thurner syndrome were rarely mentioned, and „popliteal entrapment syndrome“ was only mentioned as a suspicion (e105). In lower-extremity DVT, PE occurred in 17 cases, four of which were fatal.

Pulmonary embolism without evidence of thrombosis (N = 12)

Twelve cases of PEs (Table 3) with no specific evidence of thrombosis were listed. These cases involved ball / endurance athletes. The age range between 16 and 29 years was more affected. Eight out of twelve cases were female athletes; seven reported taking oral contraceptives. One fatal outcome was described.

Pulmonary embolism
Table 3
Pulmonary embolism

VTE and sport—special features of symptoms and diagnostics

In most cases, typical symptoms of thrombosis were detected. Swelling, pain, cyanosis and increased vascular markings were reported on all extremities. However, athletic individuals often had musculoskeletal problems, which masked the symptoms. Table 4 compares possible symptoms of thromboembolism and symptoms of sport-specific diagnoses (31, e100, e102). Localized pain that is typical for sport-specific trauma and musculoskeletal symptoms, or even intense muscle soreness, can be detected. Tissue hardening in the form of myogelosis can occur, and localized swelling and overheating can occur in a sport-specific manner. PE was not initially recognized either, despite severe shortness of breath and coughing. If the endurance athlete‘s physiological resting heart rate is well below fifty beats per minute, reactively increased heart rates in PE can remain within the normal range or be mistaken for overtraining. Even dyspnea can be masked.

Possible symptoms of deep vein thrombosis and pulmonary embolism with differential diagnosis
Table 4
Possible symptoms of deep vein thrombosis and pulmonary embolism with differential diagnosis

Discussion

The aim of this work was to determine sites of occurrence / accompanying factors as well as peculiarities in the symptoms / diagnosis of sport-associated VTE, so that this can be taken into consideration by the treating physicians. A final assessment of an overall reduced or increased VTE risk in athletes compared to the normal population is not possible; however, that was not the aim of the present study.

Site and accompanying factors

DVT and PE (either as a complication or without evidence of a primary thrombosis) are reported in the literature in connection with sports. It can be assumed that the number of unreported cases is higher, as many cases are not reported in the literature or are diagnostically overlooked. The majority of the reported case studies were relate to the upper extremity. Interestingly, this actually occurs about six times less frequently in the general population than leg vein thrombosis (e34). A pronounced muscle development as a specific requirement in weight training and overhead ball sports could play an essential role here. The site of occurrence is mostly limited to the axillary–subclavian vein. The main accompanying factors for upper-extremity DVT, summarized according to frequency, were TOS (38%), hereditary thrombophilia / a family history of VTE (16%), intensive training (12%), and use of oral contraceptives (total 7% [27% of females]); together, these accounted for 73% of cases. Therefore, these accompanying factors should be taken into account in the diagnosis.

The lower extremities are more often affected in endurance sports, and especially running. The site of occurrence can affect the lower leg up to the knee, and the thigh to the pelvis; combinations of these are common. The main accompanying factors for lower-extremity DVT, summarized according to frequency, were hereditary thrombophilia / a family history of VTE (30%), trauma (25%), immobilization (21%), and use of oral contraceptives (11% [66% of females]); together, these accounted for a total of 87% of the cases. This should also be taken into account. In studies, the prevalence rate of VTE in populations with a factor V Leiden mutation was 13–25% and significantly higher in combination mutations (32). The importance of specific polymophisms for VTE in the general population can be found in the meta-analysis by Gohil et al., whereby factor XIII plays a lesser role (e135, e136). Hereditary thrombophilia also seem to be of particular importance in lower-extremity VTE in athletes.

It should be noted that some of the case reports date from years before 1994 in which, for example, no thrombophilia diagnosis could be carried out with respect to the frequent factor V Leiden mutation (33).

Trauma, including minor injuries such as torn muscle fibers or distortions of the lower extremities that do not require subsequent immobilization, lead to a three-fold increased odds ratio of a thrombosis within four weeks (34). There also appears to be an increased risk of minor trauma associated with a factor V Leiden mutation (34).

The total proportion of all cases with clinically apparent PE was 25%; however, for cases with only lower-extremity DVT, PE was apparent in about 32%. The number of cases of PE without evidence of thrombosis (12 cases) was relatively small, which limits further evaluation. However, seven of the eight female athletes of this group used of oral contraceptives.

Symptoms and diagnostics

Overall, the detection of the specifically different accompanying factors is helpful for the diagnosis. The symptoms of VTE do not differ between athletes and non-athletes, yet they can be assessed differently and can be considerably obscured by sport-specific symptoms. This complicates and delays the diagnosis.

In a review by Taylor et al. in 2019 (31), 47 cases of athletic individuals with VTE showed more than 25 misdiagnoses, with an average time to diagnosis of 56 days (unfortunately, detailed descriptions are not given). Different pain tolerances in athletes alone can result in different assessments (35). The clinical symptoms are assessed based on musculoskeletal status, which makes another diagnosis appear more likely. Due to the sport-specific characteristics, the clinical diagnosis of VTE based on the Wells score is also significantly more difficult (36). A score for athletes was therefore developed („Athlete Deep-Vein Thrombosis Risk Assessment Screening Tool“) (e103). Accompanying factors such as a positive family history, the use of contraceptives, as well as long-haul travel and immobilization periods are taken into account. All of this underscores that the symptoms in athletes can be masked, making other diagnoses of trauma / overload to be seen as more likely. As this then leads to delayed diagnoses, this article is highly relevant for the clinically active physician. Since there are limitations with regard to the informative value of the Wells score (37), it makes sense to consider D-dimer determination at an early stage if the clinical picture is not clear. It should be noted that there can be a limited increase in D-dimer up to four weeks after trauma (38), and that acute physical stress can be accompanied by an increase in D-dimer; however, the cut-off value for DVT is usually not reached (15, 39). According to the guideline, however, the D-dimer determination should only be used if the probability is low. If there is a high probability, diagnostic imaging is indicated directly (38).

Limitations/need for future research

Overall, the data available on the topic are very limited. There are no suitable observational studies with comparison groups on the subject of VTE in sports, and the information in the processed case reports is incomplete. Individual parameters, such as intensive training, could not be defined more precisely on the basis of the sources. A final evaluation based on the PRISMA criteria (risk bias, synthesis of results, effect estimates, and additional analyzes) was also not possible. This limits the meaningfulness of the results and the assessment of the probability of VTE in various sports activities. For case reports, we would recommend for instance that the Care Guideline (40) is used, which would ensure that the information required for evaluation is also available. Prospective observational studies and further data acquisition and analysis of VTE in (competitive) sports should be the subject of future research.

Conclusion

VTE are associated with sport, and the site of occurrence differs depending on the type of sports activity. Specific accompanying factors have a locally different meaning for the VTE. Classical symptoms of VTE can be masked by sport-specific symptoms. “Keep it in mind” and using an early D-dimer diagnosis and/or imaging would be helpful. A thrombophilia diagnosis in cases with high-risk constellations should be considered.

Acknowledgements

We would like to thank Paulina Achtermann for support, and Prof. Bettina Kemkes-Matthes and Dr. Ines Halm-Heinrich for their thorough review of the manuscript.

Conflict of interest statement
The authors declare that no conflict of interest exists.

Manuscript received on 13 June 2020, revised version accepted on 12 November 2020.

Translated from the original German by Veronica A. Raker, PhD.

Corresponding author
Prof. Dr. med. Dr. phil. Thomas Hilberg
Department of Sports Medicine, University of Wuppertal
Moritzstraße 14, 42117 Wuppertal, Germany
Hilberg@uni-wuppertal.de

Cite this as
Hilberg T, Ransmann P, Hagedorn T: Sport and venous thromboembolism—site, accompanying features, symptoms, and diagnosis. Dtsch Arztebl Int 2021; 118: 181–7. DOI: 10.3238/arztebl.m2021.0021

Supplementary material

For eReferences please refer to:
www.aerzteblatt-international.de/m2021.0021

1.
Kirkilesis G, Kakkos SK, Bicknell C, Salim S, Kakavia K: Treatment of distal deep vein thrombosis. Cochrane Database Syst Rev 2020; 4: CD013422 CrossRef MEDLINE
2.
Crous-Bou M, Harrington LB, Kabrhel C: Environmental and genetic risk factors associated with venous thromboembolism. Semin Throm Hemost 2016; 42: 808–20 CrossRef MEDLINE PubMed Central
3.
Zadow EK, Adams MJ, Kitic CM, Wu SSX, Fell JW: Acquired and genetic thrombotic risk factors in the athlete. Semin Throm Hemost 2018; 44: 723–33 CrossRef MEDLINE
4.
Samama MM: An epidemiologic study of risk factors for deep vein thrombosis in medical outpatients: the sirius study. Arch Intern Med 2000; 160: 3415–20 CrossRef MEDLINE
5.
Roach RE, Cannegieter SC, Lijfering WM: Differential risks in men and women for first and recurrent venous thrombosis: the role of genes and environment. J Thromb Haemost 2014; 12: 1593–600 CrossRef MEDLINE
6.
Armstrong ME, Green J, Reeves GK, Beral V, Cairns BJ: Frequent physical activity may not reduce vascular disease risk as much as moderate activity: large prospective study of women in the United Kingdom. Circulation 2015; 131: 721–9 CrossRef MEDLINE
7.
Wattanakit K, Lutsey PL, Bell EJ, et al.: Association between cardiovascular disease risk factors and occurrence of venous thromboembolism. A time-dependent analysis. Thromb Haemost 2012; 108: 508–15 CrossRef MEDLINE PubMed Central
8.
van Stralen KJ, Doggen CJ, Lumley T, et al.: The relationship between exercise and risk of venous thrombosis in elderly people. J Am Geriatr Soc 2008; 56: 517–22 CrossRef MEDLINE
9.
Glynn RJ, Rosner B: Comparison of risk factors for the competing risks of coronary heart disease, stroke, and venous thromboembolism. Am J Epidemiol 2005; 162: 975–82 CrossRef MEDLINE
10.
Borch KH, Hansen-Krone I, Braekkan SK, et al.: Physical activity and risk of venous thromboembolism. The tromso study. Haematologica 2010; 95: 2088–94 CrossRef MEDLINE PubMed Central
11.
van Stralen KJ, Le Cessie S, Rosendaal FR, Doggen CJ: Regular sports activities decrease the risk of venous thrombosis. J Thromb Haemost 2007; 5: 2186–92 CrossRef MEDLINE
12.
Andrew M, Carter C, O‘Brodovich H, Heigenhauser G: Increases in factor VIII complex and fibrinolytic activity are dependent on exercise intensity. J Appl Physiol (1985) 1986; 60: 1917–22 CrossRef MEDLINE
13.
Sapp RM, Evans WS, Eagan LE, et al.: The effects of moderate and high intensity exercise on circulating markers of endothelial integrity and activation in young, healthy men. J Appl Physiol 2019; 127: 1245–56 CrossRef MEDLINE PubMed Central
14.
Hilberg T, Glaser D, Reckhart C, Prasa D, Sturzebecher J, Gabriel HH: Blood coagulation and fibrinolysis after long-duration treadmill exercise controlled by individual anaerobic threshold. Eur J Appl Physiol 2003; 90: 639–42 CrossRef MEDLINE
15.
Hilberg T, Prasa D, Sturzebecher J, Glaser D, Schneider K, Gabriel HH: Blood coagulation and fibrinolysis after extreme short-term exercise. Thromb Res 2003; 109: 271–7 CrossRef
16.
Hilberg T, Schmidt V, Glaser D, Schammne D, Losche W, Gabriel HH: Platelet activity, sensitivity to agonist, and platelet—leukocyte conjugate formation after long-term exercise. Platelets 2002; 13: 273–7 CrossRef MEDLINE
17.
Hilberg T, Gla D, Schmidt V, et al.: Short-term exercise and platelet activity, sensitivity to agonist, and platelet-leukocyte conjugate formation. Platelets 2003; 14: 67–74 CrossRef MEDLINE
18.
Hilberg T, Schmidt V, Losche W, Gabriel HH: Platelet activity and sensitivity to agonists after exhaustive treadmill exercise. J Sports Sci Med 2003; 2: 15–22.
19.
Hilberg T, Eichler E, Glaser D, Prasa D, Sturzebecher J, Gabriel HH: Blood coagulation and fibrinolysis before and after exhaustive exercise in patients with IDDM. J Thromb Haemost 2003; 90: 1065–73 CrossRef MEDLINE
20.
Kicken CH, Miszta A, Kelchtermans H, De Laat B: Hemostasis during extreme exertion. Semin Throm Hemost 2018; 44: 640–50 CrossRef MEDLINE
21.
Hegde SS, Goldfarb AH, Hegde S: Clotting and fibrinolytic activity change during the 1 h after a submaximal run. Med Sci Sports Exerc 2001; 33: 887–92 CrossRef MEDLINE
22.
Hilberg T, Jeschke D, Gabriel HH: Hereditary thrombophilia in elite athletes. Med Sci Sports Exerc 2002; 34: 218–21 CrossRef MEDLINE
23.
Weiss C, Egermann M, Bartsch P: Exercise-induced activation of coagulation in subjects with activated protein C resistance. Blood Coagul Fibrinolysis 2004; 15: 317–21 CrossRef MEDLINE
24.
Weiss C, Egermann M, Weiss T, Bartsch P: Exercise-induced activation of coagulation in thrombophilia. J Thromb Haemost 2003; 1: 1312–3 CrossRef MEDLINE
25.
Scudiero O, Gentile L, Ranieri A, et al.: Physical activity and thrombophilic risk in a short series. J Blood Med 2020; 11: 39–42 CrossRef MEDLINE PubMed Central
26.
Hilberg T, Menzel K, Wehmeier UF: Endurance training modifies exercise-induced activation of blood coagulation: RCT. Eur J Appl Physiol 2013; 113: 1423–30 CrossRef MEDLINE
27.
Evensen LH, Braekkan SK, Hansen JB: Regular physical activity and risk of venous thromboembolism. Semin Throm Hemost 2018; 44: 765–79 CrossRef MEDLINE
28.
Nichols AW: The thoracic outlet syndrome in athletes. J Am Board Fam Pract 1996; 9: 346–55.
29.
Farrar TA, Rankin G, Chatfield M: Venous thoracic outlet syndrome: approach to diagnosis and treatment with focus on affected athletes. Curr Sports Med Rep 2014; 13: 81–5 CrossRef MEDLINE
30.
Kahn SR, Ginsberg JS: Relationship between deep venous thrombosis and the postthrombotic syndrome. Arch Intern Med 2004; 164: 17–26 CrossRef MEDLINE
31.
Taylor BA, Parducci PM, Zaleski AL, Panza GA, Pescatello LS, Thompson PD: Venous thromboemboli associated with acute aerobic exercise: a review of case report commonalities. Scand J Med Sci Sports 2019; 29: 1749–54 CrossRef MEDLINE
32.
Seligsohn U, Lubetsky A: Genetic susceptibility to venous thrombosis. N Engl J Med 2001; 344: 1222–31 CrossRef MEDLINE
33.
Bertina RM, Koeleman BP, Koster T, et al.: Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369: 64–7 CrossRef MEDLINE
34.
van Stralen KJ, Rosendaal FR, Doggen CJ: Minor injuries as a risk factor for venous thrombosis. Arch Intern Med 2008; 168: 21–6 CrossRef MEDLINE
35.
Tesarz J, Schuster AK, Hartmann M, Gerhardt A, Eich W: Pain perception in athletes compared to normally active controls: a systematic review with meta-analysis. Pain 2012; 153: 1253–62 CrossRef MEDLINE
36.
Zaleski AL, Taylor BA, Pescatello LS, Thompson PD, Denegar C: Performance of wells score to predict deep vein thrombosis and pulmonary embolism in endurance athletes. Phys Sportsmed 2017; 45: 358–64 CrossRef MEDLINE
37.
Wells PS: Integrated strategies for the diagnosis of venous thromboembolism. J Thromb Haemost 2007; 5 (Suppl 1): 41–50 CrossRef MEDLINE
38.
Hach-Wunderle V: Diagnostik und Therapie der Venenthrombose und der Lungenembolie. AWMF Leitlinien-Register Nr 065/002; 2015.
39.
Sedaghat-Hamedani F, Kayvanpour E, Frankenstein L, et al.: Biomarker changes after strenuous exercise can mimic pulmonary embolism and cardiac injury—a metaanalysis of 45 studies. Clin Chem 2015; 61: 1246–55 CrossRef MEDLINE
40.
Riley DS, Barber MS, Kienle GS, et al.: CARE guidelines for case reports: explanation and elaboration document. J Clin Epidemiol 2017; 89: 218–35 CrossRef MEDLINE
e1.
Liberati A, Altman DG, Tetzlaff J, et al.: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 2009; 62: e1–34 CrossRef MEDLINE
e2.
Nordhausen T, Hirt J: Manual zur Literaturrecherche in Fachdatenbanken. (ed.) Institut für Gesundheits- und Pflegewissenschaft der Martin-Luther-Universität Halle-Wittenberg, Institut für Angewandte Pflegewissenschaft, FHS StGallen Schweiz 2020; 4.
e3.
Damasceno EF, Neto AM, Damasceno NA, Horowitz SA, de Moraes Junior HV: Branch retinal vein occlusion and anabolic steroids abuse in young bodybuilders. Acta Ophthalmol 2009; 87: 580–1 CrossRef MEDLINE
e4.
Dumic I, Tankosic N, Stojkovic Lalosevic M, Alempijevic T: Sport-related portal vein thrombosis: an unusual complication. Case Reports Hepatol 2017; 2017: 9324246 CrossRef MEDLINE PubMed Central
e5.
Gaudard A, Varlet-Marie E, Monnier JF, et al.: Exercise-induced central retinal vein thrombosis: possible involvement of hemorheological disturbances. A case report. Clin Hemorheol Microcirc 2002; 27: 115–22.
e6.
Jacobs DJ, Ahmad F, Pathengay A, Flynn HW Jr.: Central retinal vein occlusion after intense exercise: response to intravitreal bevacizumab. Ophthalmic Surg Lasers Imaging 2011; 42 Online: e59–62 CrossRef MEDLINE
e7.
Ozawa Y, Koto T, Shinoda H, Tsubota K: Vision loss by central retinal vein occlusion after kaatsu training: a case report. Medicine 2015; 94: e1515 CrossRef MEDLINE PubMed Central
e8.
Richard S, Lacour JC, Frotscher B, Enea A, Mione G, Ducrocq X: Report of a recurrent cerebral venous thrombosis in a young athlete. BMC Neurol 2014; 14: 182 CrossRef MEDLINE PubMed Central
e9.
Sahraian MA, Mottamedi M, Azimi AR, Moghimi B: Androgen-induced cerebral venous sinus thrombosis in a young body builder: case report. BMC Neurol 2004; 4: 22 CrossRef MEDLINE PubMed Central
e10.
Saneto RP, Samples S, Kinkel RP: Traumatic intracerebral venous thrombosis associated with an abnormal golf swing. Headache 2000; 40: 595–8 CrossRef MEDLINE
e11.
Walsh M, Moriarity J, Peterson J, Friend G, Chodock R, Rogan M: Portal venous thrombosis in a backpacker. Phys Sportsmed 1996; 24: 75–8 CrossRef .
e12.
Wobser H, Scholmerich J, Buttner R: [19-year-old kick-boxer with hematemesis and splenomegaly]. Internist 2010; 51: 213–8 CrossRef MEDLINE
e13.
Allana AM, Teo LL, Chuah BY, Liu TC, Cheah WK: Effort thrombosis in a young triathlete: an unusual presentation of painless neck swelling secondary to right brachiocephalic vein thrombosis. Singapore Med J 2011; 52: e37–9.
e14.
Alva H, Goyeneche N, Fletcher M, Warrier R: Sports injury or venous thrombosis? Clin Pediatr (Phila) 2019; 58: 1042–4 CrossRef MEDLINE
e15.
Aquino BC, Barone EJ: „Effort“ thrombosis of the axillary and subclavian vein associated with cervical rib and oral contraceptives in a young woman athlete. J Am Board Fam Med 1989; 2: 208–11.
e16.
Brandao LR, Williams S, Kahr WH, Ryan C, Temple M, Chan AK: Exercise-induced deep vein thrombosis of the upper extremity. 2. A case series in children. Acta Haematol 2006; 115: 221–9 CrossRef MEDLINE
e17.
Brunner U: [Effort thrombosis of the athlete]. Z Unfallmed Berufskr 1968; 61: 42–6.
e18.
Bushnell BD, Anz AW, Dugger K, Sakryd GA, Noonan TJ: Effort thrombosis presenting as pulmonary embolism in a professional baseball pitcher. Sports Health 2009; 1: 493–9 CrossRef MEDLINE PubMed Central
e19.
Carpenetti PE, Grosel JM: Thoracic outlet syndrome presenting with subclavian vein thrombosis. JAAPA 2018; 31: 1–4 CrossRef MEDLINE
e20.
Chaudhry MA, Hajarnavis J: Paget-von Schrotter syndrome: primary subclavian-axillary vein thrombosis in sport activities. Clin J Sport Med 2003; 13: 269–71 CrossRef MEDLINE
e21.
Ciampi P, Agnoletto M, Scotti C, et al.: Thoracic outlet syndrome in the overhead athlete: a report of 2 cases of subclavius posticus muscle. Clin J Sport Med 2017; 27: e29–e31 CrossRef MEDLINE
e22.
DeLisa LC, Hensley CP, Jackson S: Diagnosis of Paget-Schroetter Syndrome/primary effort thrombosis in a recreational weight lifter. Phys Ther 2017; 97: 13–9 CrossRef MEDLINE
e23.
Deweber K: Effort thrombosis with sepsis. Phys Sportsmed 1999; 27: 74–86 CrossRef MEDLINE
e24.
Esposito MD, Arrington JA, Blackshear MN, Murtagh FR, Silbiger ML: Thoracic outlet syndrome in a throwing athlete diagnosed with MRI and MRA. J Magn Reson Imaging 1997; 7: 598–9 CrossRef MEDLINE
e25.
Fundora MP, Rudnick C, Barbur C: Spontaneous upper extremity venous thrombosis in a collegiate soccer player: a case report. Pediatr Emerg Care 2016; 32: 25–8 CrossRef MEDLINE
e26.
Hegedus EJ, Cooper L, Cook C: Diagnosis of a rare source of upper extremity symptoms in a healthy woman after weight lifting. J Orthop Sports Phys Ther 2006; 36: 882–6 CrossRef MEDLINE
e27.
Hendrickson CD, Godek A, Schmidt P: Paget-Schroetter Syndrome in a collegiate football player. Clin J Sport Med 2006; 16: 79–80 CrossRef MEDLINE
e28.
Hurbanek JG, Anderson K, Kaatz S, Shepard A, Workings M, Rand K: Ulnar deep venous thrombosis in a professional baseball pitcher: a case report. Am J Sports Med 2007; 35: 2131–4 CrossRef MEDLINE
e29.
Hurley WL, Comins SA, Green RM, Canizzaro J: Atraumatic subclavian vein thrombosis in a collegiate baseball player: a case report. J Athl Train 2006; 41: 198–200.
e30.
Ibrahim R, Dashkova I, Williams M, et al.: Paget-Schroetter syndrome in the absence of common predisposing factors: a case report. Thromb J 2017; 15: 20 CrossRef MEDLINE PubMed Central
e31.
Ijaopo R, Oguntolu V, DCosta D, Garnham A, Hobbs S: A case of Paget-Schroetter syndrome (PSS) in a young judo tutor: a case report. J Medical Case Rep 2016; 10: 63 CrossRef MEDLINE PubMed Central
e32.
Ilhan E, Ture M, Yilmaz C, Arslan M: Subclavian vein thrombosis extending into the internal jugular vein: Paget-von Schroetter Syndrome. Clin Med Res 2009; 1: 178–80 CrossRef
e33.
Jackson SS, O‘Brien MJ: Case report: upper extremity deep venous thrombosis in a 19-year-old baseball player. Phys Sportsmed 2014; 42: 163–7 CrossRef MEDLINE
e34.
Jourdain V, Goldenberg WD, Matteucci M, Auten J: Paget-Schroetter syndrome: diagnostic limitations of imaging upper extremity deep vein thrombosis. Am J Emerg Med 2016; 34: 683: e1–3 CrossRef MEDLINE
e35.
Keisler BD, Armsey TD, 2nd: Paget-Schroetter syndrome in an overhead athlete. Curr Sports Med Rep 2005; 4: 217–9 CrossRef MEDLINE
e36.
Kellar J, Trigger C: Thoracic outlet syndrome with secondary Paget Schroetter Syndrome: a rare case of effort-induced thrombosis of the upper extremity. West J Emerg Med 2014; 15: 364–5 CrossRef MEDLINE PubMed Central
e37.
Kohen D, Hanhan S, Bellah R: Paget-Schroetter syndrome in a lacrosse player. Del Med J 2013; 85: 77–9.
e38.
Korsake K, Meyer F, Dillner J, et al.: Venous thoracic outlet syndrome with acute thrombosis of the subclavian vein (Paget-Schroetter syndrome). Gefässchirurgie 2020; 25: 44–50 CrossRef
e39.
Liang HW, Su TC, Hwang BS, Hung MH: Effort thrombosis of the upper extremities related to an arm stretching exercise. J Formos Med Assoc 2006; 105: 182–6 CrossRef
e40.
Lutter C, Monasterio E, Schoffl V: Rock climbing-related subclavian vein thrombosis. BMJ Case Rep 2015; 2015: bcr2015212021 CrossRef MEDLINE PubMed Central
e41.
McGlinchey PG, Shamsuddin SA, Kidney JC: Effort-induced thrombosis of the subclavian vein—a case of Paget-Schroetter syndrome. Ulster Med J 2004; 73: 45–6.
e42.
Medler RG, McQueen DA: Effort thrombosis in a young wrestler. A case report. J Bone Joint Surg Am 1993; 75: 1071–3 CrossRef MEDLINE
e43.
Meier MA, Rubenfire M: Life-threatening acute and chronic thromboembolic pulmonary hypertension and subclavian vein thrombosis. Clin Cardiol 2006; 29: 103–6 CrossRef MEDLINE PubMed Central
e44.
Nemmers DW, Thorpe PE, Knibbe MA, Beard DW: Upper extremity venous thrombosis. Case report and literature review. Orthop Rev 1990; 19: 164–72.
e45.
Nitz AJ, Nitz JA: Vascular thoracic outlet in a competitive swimmer: a case report. Int J Sports Phys Ther 2013; 8: 74–9.
e46.
Norinsky AB, Espinosa J, Kianmajd M, DiLeonardo F: Painless acrocyanosis: Paget-Schroetter syndrome secondary to thoracic outlet obstruction from muscle hypertrophy. Am J Emerg Med 2016; 34: 1323.e1–3 CrossRef MEDLINE
e47.
Noto T, Hashimoto G, Takagi T, et al.: Paget-Schroetter Syndrome Resulting from thoracic outlet syndrome and KAATSU Training. Intern Med (Tokyo, Japan) 2017; 56: 2595–601 CrossRef MEDLINE PubMed Central
e48.
O‘Keefe S, Carmody KA: Paget-Schroetter syndrome diagnosed by bedside emergency physician performed ultrasound: a case report. J Emerg Med 2013; 45: 74–7 CrossRef MEDLINE
e49.
Oktar GL, Ergul EG: Paget-Schroetter syndrome. Hong Kong Med J 2007; 13: 243–5.
e50.
O‘Leary MR, Smith MS, Druy EM: Diagnostic and therapeutic approach to axillary-subclavian vein thrombosis. Ann Emerg Med 1987; 16: 889–93 CrossRef
e51.
Overstreet DS, Skinner WH, Roy TM: Primary thrombosis in the upper extremity. J Ky Med Assoc 1993; 91: 54–7.
e52.
Ozcakar L, Donmez G, Yorubulut M, et al.: Paget-Schroetter syndrome forerunning the diagnoses of thoracic outlet syndrome and thrombophilia. Clin Appl Thromb Hemost 2010; 16: 351–5 CrossRef MEDLINE
e53.
Piatek LJ: Comment on „Effort thrombosis in the elite throwing athlete“. Am J Sports Med 2003; 31: 636.
e54.
Ringhouse B, Jackson C: Bringing to light symptoms and treatments of effort thrombosis (Paget-Schroetter Syndrome) in the military population, a case study. Mil Med 2017; 182: e1826–e9 CrossRef MEDLINE
e55.
Roche-Nagle G, Ryan R, Barry M, Brophy D: Effort thrombosis of the upper extremity in a young sportsman: Paget-Schroetter syndrome. Br J Sports Med 2007; 41: 540–1 CrossRef MEDLINE PubMed Central
e56.
Rowan TL, Kazemi M: Paget Schroetter Syndrome: a case study of the chiropractor‘s role in recognizing and comanaging an important condition. J Can Chiropr Assoc 2012; 56: 256–61.
e57.
Saborowski F: [Over-exertion thrombosis of the axillary vein and the subclavian vein]. Med Klin 1970; 65: 1939–41.
e58.
Sancho-Gonzalez I, Bonilla-Hernandez MV, Ibanez-Munoz D, Vicente-Campos D, Chicharro JL: Upper extremity deep vein thrombosis in a triathlete: again intense endurance exercise as a thrombogenic risk. Am J Emerg Med 2017; 35: 808.e1–e3 CrossRef MEDLINE
e59.
Sayin A, Gungor H, Bilgin M, Erturk U: Paget-von Schrotter syndrome: upper extremity deep vein thrombosis after heavy exercise. Turk Kardiyol Dern Ars 2012; 40: 354–7 CrossRef MEDLINE
e60.
Shennib H, Hickle K, Bowles B: Axillary vein thrombosis induced by an increasingly popular oscillating dumbbell exercise device: a case report. J Cardiothorac Surg 2015; 10: 73 CrossRef MEDLINE PubMed Central
e61.
Sheth D, Ferral H, Patel NH: AJR teaching file: weight lifter with swelling in the upper arm. AJR Am J Roentgenol 2007; 189: S21–3 CrossRef MEDLINE
e62.
Shimada T, Tounai T, Syoji T, Fukumoto Y: Acute pulmonary embolism due to Paget-Schroetter Syndrome. Intern Med (Tokyo, Japan) 2015; 54: 1875–9 CrossRef MEDLINE
e63.
Shiva C, Saini M: Paget-von Schroetter Syndrome: upper extremity deep vein thrombosis after continuous lifting of heavy weight. J Assoc Physicians India 2015; 63: 84–5.
e64.
Skerker RS, Flandry FC: Case presentation: painless arm swelling in a high school football player. Med Sci Sports Exerc 1992; 24: 1185–9 CrossRef
e65.
Snead D, Marberry KM, Rowdon G: Unique treatment regimen for effort thrombosis in the nondominant extremity of an overhead athlete: a case report. J Athl Train 2009; 44: 94–7 CrossRef MEDLINE PubMed Central
e66.
Soric M, Grabovac V: Swollen arm in a former athlete. Hong Kong J Emerg Med 2017; 24: 35–6 CrossRef
e67.
Spencer TR, Lagace RE, Waterman G: Effort thrombosis (Paget-Schroetter syndrome) in a 16-year-old male. Am J Case Rep 2014; 15: 333–6 CrossRef MEDLINE PubMed Central
e68.
Stake S, du Breuil AL, Close J: Upper extremity deep vein thromboses: the bowler and the barista. Case Rep Vasc Med 2016; 2016: 9631432 CrossRef MEDLINE PubMed Central
e69.
Stamm F, Brunner UV: [Axillary and subclavian venous thrombosis in cross-country skiers]. ZFA 1982; 58: 1766–8.
e70.
Steele K: Bilateral axillary vein thrombosis. Ulster Med J 1983; 52: 71–2.
e71.
Toth F, Kelemen J, Szatai I: [The so called „exertion thrombosis“ of the axillary vein]. Fortschr Geb Rontgenstr Nuklearmed 1963; 99: 484–92 CrossRef
e72.
Toya N, Fujita T, Ohki T: Push-up exercise induced thrombosis of the subclavian vein in a young woman: report of a case. Surg Today 2007; 37: 1093–5 CrossRef MEDLINE
e73.
Treat SD, Smith PA, Wen DY, Kinderknecht JJ: Deep vein thrombosis of the subclavian vein in a college volleyball player. Am J Sports Med 2004; 32: 529–32 CrossRef MEDLINE
e74.
VanWye WR, Pinerola J, Ogle KC, Wallmann HW: Screening for referral by a sports physical therapist reveals an effort thrombosis in a collegiate pitcher: a case report. Int J Sports Phys Ther 2016; 11: 607–13.
e75.
Vijaysadan V, Zimmerman AM, Pajaro RE: Paget-Schroetter syndrome in the young and active. J Am Board Fam Med 2005; 18: 314–9 CrossRef MEDLINE
e76.
Vogel CM, Jensen JE: „Effort“ thrombosis of the subclavian vein in a competitive swimmer. Am J Sports Med 1985; 13: 269–72 CrossRef MEDLINE
e77.
Wong JW, Lai FW, Wilson I: Subclavian vein thrombosis with internal jugular vein extension in an Australian rules football player. Med J Aust 2018; 209: 335–6 CrossRef MEDLINE
e78.
Wright RS, Lipscomb AB: Acute occlusion of the subclavian vein in an athlete: diagnosis, etiology and surgical management. J Sports Med 1974; 2: 343–8 CrossRef MEDLINE
e79.
Yagi S, Mitsugi M, Sangawa T, Akaike M, Sata M: Paget-Schroetter Syndrome in a baseball pitcher. Int Heart J 2017; 58: 637–40 CrossRef MEDLINE
e80.
Zell L, Kindermann W, Marschall F, Scheffler P, Gross J, Buchter A: Paget-Schroetter syndrome in sports activities—case study and literature review. Angiology 2001; 52: 337–42 CrossRef MEDLINE
e81.
Zell L, Scheffler P, Marschall F, Buchter A: [Paget-Schroetter syndrome caused by wrestling]. Sportverletz Sportschaden 2000; 14: 31–4 CrossRef MEDLINE
e82.
Alhadad A, Acosta S, Sarabi L, Kolbel T: Pulmonary embolism associated with protein C deficiency and abuse of anabolic-androgen steroids. Clin Appl Thromb Hemost 2010; 16: 228–31 CrossRef MEDLINE
e83.
Abood KK, Paul MR, Kuo DJ: Deep vein thrombosis in a young, healthy baseball catcher: a case report and review of the literature. J Pediatr Hematol Oncol 2019; 41: 321–3 CrossRef MEDLINE PubMed Central
e84.
Ali MS, Kutty MS, Corea JR: Deep vein thrombosis in a jogger. Am J Sports Med 1984; 12: 169 CrossRef MEDLINE
e85.
Amann W, Fruhwirth J, Schweiger W, Koch G: [Isolated pelvic vein thrombosis in a young marathon runner]. Sportverletz Sportschaden 1997; 11: 33–4 CrossRef MEDLINE
e86.
Botto N, Pasanisi E, Chubuchny V, Andreassi MG: Deep venous thromboembolism after a trauma in a football player double heterozygous for factor V Leiden and prothrombin G20210A mutation: the role of genetic testing in sport. J Cardiol Cases 2012; 6: e133-e6 CrossRef MEDLINE PubMed Central
e87.
Bramhall S, Winslet MC: Fatal pulmonary embolus in a keep-fit enthusiast. Br J Hosp Med 1993; 50: 342.
e88.
Cauley K, Wright P: Iliac vein compression and pulmonary embolism in a long distance runner: computed tomography and magnetic resonance imaging-a case report. Angiology 2005; 56: 87–91 CrossRef MEDLINE
e89.
De Caterina M, Grimaldi E, Passaretti M, et al.: Four cases of venous thrombosis in athletes with silent hereditary defects of the protein C system. Thromb Haemost 2005; 94: 463–4.
e90.
Delcau CM: Deep venous thrombosis in umpires. South Med J 1992; 85: 670 CrossRef MEDLINE
e91.
Echlin PS, Upshur RE, McKeag DB, Jayatilake HP: Traumatic deep vein thrombosis in a soccer player: a case study. Thromb J 2004; 2: 8 CrossRef MEDLINE PubMed Central
e92.
Eichner ER: Venous thromboembolism in ice hockey; progress and challenges in exertional sickling. Curr Sports Med Rep 2019; 18: 157–8 CrossRef MEDLINE
e93.
Eichner ER: Venous thromboembolism in athletes: lessons from the Chris Bosh Story. Curr Sports Med Rep 2016; 15: 221–2 CrossRef MEDLINE
e94.
Eichner ER: Clots and consequences in athletes. Curr Sports Med Rep 2014; 13: 287–8 CrossRef MEDLINE
e95.
Fink ML, Stoneman PD: Deep vein thrombosis in an athletic military cadet. J Orthop Sports Phys Ther 2006; 36: 686–97 CrossRef MEDLINE
e96.
Fleming A, Frey D: Extensive venous thrombosis in a runner: progression of symptoms key to diagnosis. Phys Sportsmed 2005; 33: 34–6 CrossRef MEDLINE
e97.
Gasser B: [An endurance athlete with calf pain—Probably musculoskeletal?]. Praxis 2018; 107: 783–5.
e98.
Gorard DA: Effort thrombosis in an American football player. Br J Sports Med 1990; 24: 15 CrossRef MEDLINE PubMed Central
e99.
Harvey JS Jr.: Effort thrombosis in the lower extremity of a runner. Am J Sports Med 1978; 6: 400–2 CrossRef MEDLINE
e100.
Hull CM, Harris JA: Venous thromboembolism in physically active people: considerations for risk assessment, mainstream awareness and future research. Sports Med (Auckland, NZ) 2015; 45: 1365–72 CrossRef MEDLINE
e101.
Hull CM, Hopkins CL, Purdy NJ, Lloyd RC, Harris JA: A case of unprovoked venous thromboembolism in a marathon athlete presenting atypical sequelae: what are the chances? Scand J Med Sci Sports 2015; 25: 699–705 CrossRef MEDLINE
e102.
Hull CM, Rajendran D, Fernandez Barnes A: Deep vein thrombosis and pulmonary embolism in a mountain guide: awareness, diagnostic challenges, and management considerations at altitude. Wilderness Environ Med 2016; 27: 100–6 CrossRef MEDLINE
e103.
Hummel C, Geisler PR, Reynolds T, Lazenby T: Posttraumatic deep vein thrombosis in collegiate athletes: an exploration clinical case series. J Athl Train 2018; 53: 497–502 CrossRef MEDLINE PubMed Central
e104.
Kaplan Y: Deep vein thrombosis and the athlete: a case study. Int J Disabil Hum Dev 2008; 7: 107–9 CrossRef
e105.
Kean J, Pearton A, Fell JW, et al.: Deep vein thrombosis in a well-trained masters cyclist, is popliteal vein entrapment syndrome to blame? J Thromb Thrombolysis 2019; 47: 301–4 CrossRef MEDLINE
e106.
Korsten-Reck U, Winterer J, Konig D, Dickhuth HH: [Pulmonary embolism as a cause of a reduced performance capacity of endurance trained men—report of 2 cases]. Dtsch Med Wochenschr (1946) 2010; 135: 1596–600 CrossRef MEDLINE
e107.
Mackie JW, Webster JA: Deep vein thrombosis in marathon runners. Phys Sportsmed 1981; 9: 91–6 CrossRef MEDLINE
e108.
Nakamura KM, Skeik N, Shepherd RF, Wennberg PW: External iliac vein thrombosis in an athletic cyclist with a history of external iliac artery endofibrosis and thrombosis. Vasc Endovascular Surg 2011; 45: 761–4 CrossRef MEDLINE
e109.
Orlik J, McVey J: Deep vein thrombosis and bilateral pulmonary embolism following minor trauma to the popliteal fossa: could this have been avoided? Cjem 2011; 13: 122–6 CrossRef MEDLINE
e110.
Papastergiou SG, Koukoulias NE, Tsitouridis I, Natsis C, Parisis CA: Circumflex femoral vein thrombosis misinterpreted as acute hamstring strain. Br J Sports Med 2007; 41: 460–1 CrossRef MEDLINE PubMed Central
e111.
Petrin Z, Wowkanech C, Sinha AN, Gupta S, Patel MK: Female runner with painful left thigh swelling: a case of May-Thurner Syndrome. PM R 2018; 10: 227–9 CrossRef MEDLINE
e112.
Pilgrim T, Meier B, Khattab AA: Death by patent foramen ovale in a soccer player. J Invasive Cardiol 2013; 25: 162–4.
e113.
Roberts WO, Christie DM Jr.: Return to training and competition after deep venous calf thrombosis. Med Sci Sports Exerc 1992; 24: 2–5 CrossRef MEDLINE
e114.
Salam A, Chung J, Milner R: External iliac vein stenosis owing to prolonged cycling. Vascular 2010; 18: 111–5 CrossRef MEDLINE
e115.
Sanz de la Garza M, Lopez A, Sitges M: Multiple pulmonary embolisms in a male marathon athlete: Is intense endurance exercise a real thrombogenic risk? Scand J Med Sci Sports 2017; 27: 563–6 CrossRef MEDLINE
e116.
Schobi R, Kocher F, Vorburger C: [Deep leg vein thrombosis during skiing. A case report]. Schweiz Med Wochenschr 1983; 113: 1402–3.
e117.
Sergi D, Cravatari M, Ukmar M, Ponte E: Caval thrombosis in a young athlete. Minerva Cardioangiol 2001; 49: 267–72.
e118.
Sidler GJ, Bugaieski SM, Sunderlin J, Weltman A: Difficulty in diagnosing and treating deep vein thrombosis in a competitive basketball player. Phys Sportsmed 1985; 13: 113–8 CrossRef MEDLINE
e119.
Stamm F, Brunner UV: [Effort thrombosis of the lower extremities in athletes]. Schweiz Z Sportmed 1983; 31: 22–3.
e120.
Tao K, Davenport M: Deep venous thromboembolism in a triathlete. J Emerg Med 2010; 38: 351–3 CrossRef MEDLINE
e121.
Theiss JL, Fink ML, Gerber JP: Deep vein thrombosis in a young marathon athlete. J Orthop Sports Phys Ther 2011; 41: 942–7 CrossRef MEDLINE
e122.
Thompson TL, Robinson AK, Gilbert C: Deep vein thrombosis of the lower extremity in a football player: a case report. Clin J Sport Med 2006; 16: 372–4 CrossRef MEDLINE
e123.
Vucicevic Z, Degoricija V, Alfirevic Z, Sharma M: Inferior vena cava agenesia and a massive bilateral iliofemoral venous thrombosis. Angiology 2008; 59: 510–3 CrossRef MEDLINE
e124.
Wong C, Bracker M: Coagulopathy presenting as calf pain in a racquetball player. J Fam Pract 1993; 37: 390–3.
e125.
Croyle PH, Place RA, Hilgenberg AD: Massive pulmonary embolism in a high school wrestler. JAMA 1979; 241: 827–8 CrossRef CrossRef
e126.
Devilbiss Z, O‘Connor F: Pulmonary embolism in a collegiate softball athlete: a case report. Curr Sports Med Rep 2020; 19: 53–7 CrossRef MEDLINE
e127.
Erickson K, Powers ME: Factor V leiden thrombophilia in a female collegiate soccer athlete: a case report. J Athl Train 2013; 48: 431–5 CrossRef MEDLINE PubMed Central
e128.
Kahanov L, Daly T: Bilateral pulmonary emboli in a collegiate gymnast: a case report. J Athl Train 2009; 44: 666–71 CrossRef MEDLINE PubMed Central
e129.
Landesberg WH: Pulmonary embolism in a female collegiate cross-country runner presenting as nonspecific back pain. J Chiropr Med 2012; 11: 215–20 CrossRef MEDLINE PubMed Central
e130.
Larsen E: Static or dynamic repair of chronic lateral ankle instability. A prospective randomized study. Clin Orthop Relat Res 1990; 257: 184–92 CrossRef
e131.
Moffatt K, Silberberg PJ, Gnarra DJ: Pulmonary embolism in an adolescent soccer player: a case report. Med Sci Sports Exerc 2007; 39: 899–902 CrossRef MEDLINE
e132.
Ouyang DL, Chow AY, Daly TK, Garza D, Matheson GO: Bilateral pulmonary emboli in a competitive gymnast. Clin J Sport Med 2010; 20: 64–5 CrossRef PubMed Central
e133.
Rand K, Sherman CB: An unusual case of pulmonary embolism in a young healthy female competitive rower. R I Med J (2013) 2014; 97: 57–9.
e134.
Tsung AH, Williams JB, Whitford AC: Sixteen-year-old athlete with chest pain and shortness of breath due to pulmonary emboli. J Emerg Med 2013; 44: 939–42 CrossRefMEDLINE
e135.
Bereczky Z, Muszbek L: Factor XIII and venous thromboembolism. Semin Thromb Hemost 2011; 37: 305–14 CrossRef MEDLINE
e136.
Gohil R, Peck G, Sharma P: The genetics of venous thromboembolism. A meta-analysis involving approximately 120,000 cases and 180,000 controls. Thromb Haemost 2009; 102: 360–70 CrossRef MEDLINE
School of Human and Social Sciences, Department of Sports Medicine, University of Wuppertal: Prof. Dr. med. Dr. phil. Thomas Hilberg, Pia Ransmann, Dr. med. Thorsten Hagedorn
A flow diagram for selection of literature in accordance with the PRISMA statement
Figure
A flow diagram for selection of literature in accordance with the PRISMA statement
Upper-extremity deep vein thrombosis
Table 1
Upper-extremity deep vein thrombosis
Deep vein thrombosis (DVT) of the lower extremities
Table 2
Deep vein thrombosis (DVT) of the lower extremities
Pulmonary embolism
Table 3
Pulmonary embolism
Possible symptoms of deep vein thrombosis and pulmonary embolism with differential diagnosis
Table 4
Possible symptoms of deep vein thrombosis and pulmonary embolism with differential diagnosis
1.Kirkilesis G, Kakkos SK, Bicknell C, Salim S, Kakavia K: Treatment of distal deep vein thrombosis. Cochrane Database Syst Rev 2020; 4: CD013422 CrossRef MEDLINE
2.Crous-Bou M, Harrington LB, Kabrhel C: Environmental and genetic risk factors associated with venous thromboembolism. Semin Throm Hemost 2016; 42: 808–20 CrossRef MEDLINE PubMed Central
3.Zadow EK, Adams MJ, Kitic CM, Wu SSX, Fell JW: Acquired and genetic thrombotic risk factors in the athlete. Semin Throm Hemost 2018; 44: 723–33 CrossRef MEDLINE
4.Samama MM: An epidemiologic study of risk factors for deep vein thrombosis in medical outpatients: the sirius study. Arch Intern Med 2000; 160: 3415–20 CrossRef MEDLINE
5.Roach RE, Cannegieter SC, Lijfering WM: Differential risks in men and women for first and recurrent venous thrombosis: the role of genes and environment. J Thromb Haemost 2014; 12: 1593–600 CrossRef MEDLINE
6.Armstrong ME, Green J, Reeves GK, Beral V, Cairns BJ: Frequent physical activity may not reduce vascular disease risk as much as moderate activity: large prospective study of women in the United Kingdom. Circulation 2015; 131: 721–9 CrossRef MEDLINE
7.Wattanakit K, Lutsey PL, Bell EJ, et al.: Association between cardiovascular disease risk factors and occurrence of venous thromboembolism. A time-dependent analysis. Thromb Haemost 2012; 108: 508–15 CrossRef MEDLINE PubMed Central
8.van Stralen KJ, Doggen CJ, Lumley T, et al.: The relationship between exercise and risk of venous thrombosis in elderly people. J Am Geriatr Soc 2008; 56: 517–22 CrossRef MEDLINE
9.Glynn RJ, Rosner B: Comparison of risk factors for the competing risks of coronary heart disease, stroke, and venous thromboembolism. Am J Epidemiol 2005; 162: 975–82 CrossRef MEDLINE
10.Borch KH, Hansen-Krone I, Braekkan SK, et al.: Physical activity and risk of venous thromboembolism. The tromso study. Haematologica 2010; 95: 2088–94 CrossRef MEDLINE PubMed Central
11.van Stralen KJ, Le Cessie S, Rosendaal FR, Doggen CJ: Regular sports activities decrease the risk of venous thrombosis. J Thromb Haemost 2007; 5: 2186–92 CrossRef MEDLINE
12.Andrew M, Carter C, O‘Brodovich H, Heigenhauser G: Increases in factor VIII complex and fibrinolytic activity are dependent on exercise intensity. J Appl Physiol (1985) 1986; 60: 1917–22 CrossRef MEDLINE
13.Sapp RM, Evans WS, Eagan LE, et al.: The effects of moderate and high intensity exercise on circulating markers of endothelial integrity and activation in young, healthy men. J Appl Physiol 2019; 127: 1245–56 CrossRef MEDLINE PubMed Central
14.Hilberg T, Glaser D, Reckhart C, Prasa D, Sturzebecher J, Gabriel HH: Blood coagulation and fibrinolysis after long-duration treadmill exercise controlled by individual anaerobic threshold. Eur J Appl Physiol 2003; 90: 639–42 CrossRef MEDLINE
15.Hilberg T, Prasa D, Sturzebecher J, Glaser D, Schneider K, Gabriel HH: Blood coagulation and fibrinolysis after extreme short-term exercise. Thromb Res 2003; 109: 271–7 CrossRef
16.Hilberg T, Schmidt V, Glaser D, Schammne D, Losche W, Gabriel HH: Platelet activity, sensitivity to agonist, and platelet—leukocyte conjugate formation after long-term exercise. Platelets 2002; 13: 273–7 CrossRef MEDLINE
17.Hilberg T, Gla D, Schmidt V, et al.: Short-term exercise and platelet activity, sensitivity to agonist, and platelet-leukocyte conjugate formation. Platelets 2003; 14: 67–74 CrossRef MEDLINE
18.Hilberg T, Schmidt V, Losche W, Gabriel HH: Platelet activity and sensitivity to agonists after exhaustive treadmill exercise. J Sports Sci Med 2003; 2: 15–22.
19.Hilberg T, Eichler E, Glaser D, Prasa D, Sturzebecher J, Gabriel HH: Blood coagulation and fibrinolysis before and after exhaustive exercise in patients with IDDM. J Thromb Haemost 2003; 90: 1065–73 CrossRef MEDLINE
20.Kicken CH, Miszta A, Kelchtermans H, De Laat B: Hemostasis during extreme exertion. Semin Throm Hemost 2018; 44: 640–50 CrossRef MEDLINE
21.Hegde SS, Goldfarb AH, Hegde S: Clotting and fibrinolytic activity change during the 1 h after a submaximal run. Med Sci Sports Exerc 2001; 33: 887–92 CrossRef MEDLINE
22.Hilberg T, Jeschke D, Gabriel HH: Hereditary thrombophilia in elite athletes. Med Sci Sports Exerc 2002; 34: 218–21 CrossRef MEDLINE
23.Weiss C, Egermann M, Bartsch P: Exercise-induced activation of coagulation in subjects with activated protein C resistance. Blood Coagul Fibrinolysis 2004; 15: 317–21 CrossRef MEDLINE
24.Weiss C, Egermann M, Weiss T, Bartsch P: Exercise-induced activation of coagulation in thrombophilia. J Thromb Haemost 2003; 1: 1312–3 CrossRef MEDLINE
25.Scudiero O, Gentile L, Ranieri A, et al.: Physical activity and thrombophilic risk in a short series. J Blood Med 2020; 11: 39–42 CrossRef MEDLINE PubMed Central
26.Hilberg T, Menzel K, Wehmeier UF: Endurance training modifies exercise-induced activation of blood coagulation: RCT. Eur J Appl Physiol 2013; 113: 1423–30 CrossRef MEDLINE
27.Evensen LH, Braekkan SK, Hansen JB: Regular physical activity and risk of venous thromboembolism. Semin Throm Hemost 2018; 44: 765–79 CrossRef MEDLINE
28.Nichols AW: The thoracic outlet syndrome in athletes. J Am Board Fam Pract 1996; 9: 346–55.
29.Farrar TA, Rankin G, Chatfield M: Venous thoracic outlet syndrome: approach to diagnosis and treatment with focus on affected athletes. Curr Sports Med Rep 2014; 13: 81–5 CrossRef MEDLINE
30.Kahn SR, Ginsberg JS: Relationship between deep venous thrombosis and the postthrombotic syndrome. Arch Intern Med 2004; 164: 17–26 CrossRef MEDLINE
31.Taylor BA, Parducci PM, Zaleski AL, Panza GA, Pescatello LS, Thompson PD: Venous thromboemboli associated with acute aerobic exercise: a review of case report commonalities. Scand J Med Sci Sports 2019; 29: 1749–54 CrossRef MEDLINE
32.Seligsohn U, Lubetsky A: Genetic susceptibility to venous thrombosis. N Engl J Med 2001; 344: 1222–31 CrossRef MEDLINE
33.Bertina RM, Koeleman BP, Koster T, et al.: Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369: 64–7 CrossRef MEDLINE
34.van Stralen KJ, Rosendaal FR, Doggen CJ: Minor injuries as a risk factor for venous thrombosis. Arch Intern Med 2008; 168: 21–6 CrossRef MEDLINE
35.Tesarz J, Schuster AK, Hartmann M, Gerhardt A, Eich W: Pain perception in athletes compared to normally active controls: a systematic review with meta-analysis. Pain 2012; 153: 1253–62 CrossRef MEDLINE
36.Zaleski AL, Taylor BA, Pescatello LS, Thompson PD, Denegar C: Performance of wells score to predict deep vein thrombosis and pulmonary embolism in endurance athletes. Phys Sportsmed 2017; 45: 358–64 CrossRef MEDLINE
37.Wells PS: Integrated strategies for the diagnosis of venous thromboembolism. J Thromb Haemost 2007; 5 (Suppl 1): 41–50 CrossRef MEDLINE
38.Hach-Wunderle V: Diagnostik und Therapie der Venenthrombose und der Lungenembolie. AWMF Leitlinien-Register Nr 065/002; 2015.
39.Sedaghat-Hamedani F, Kayvanpour E, Frankenstein L, et al.: Biomarker changes after strenuous exercise can mimic pulmonary embolism and cardiac injury—a metaanalysis of 45 studies. Clin Chem 2015; 61: 1246–55 CrossRef MEDLINE
40.Riley DS, Barber MS, Kienle GS, et al.: CARE guidelines for case reports: explanation and elaboration document. J Clin Epidemiol 2017; 89: 218–35 CrossRef MEDLINE
e1.Liberati A, Altman DG, Tetzlaff J, et al.: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 2009; 62: e1–34 CrossRef MEDLINE
e2.Nordhausen T, Hirt J: Manual zur Literaturrecherche in Fachdatenbanken. (ed.) Institut für Gesundheits- und Pflegewissenschaft der Martin-Luther-Universität Halle-Wittenberg, Institut für Angewandte Pflegewissenschaft, FHS StGallen Schweiz 2020; 4.
e3.Damasceno EF, Neto AM, Damasceno NA, Horowitz SA, de Moraes Junior HV: Branch retinal vein occlusion and anabolic steroids abuse in young bodybuilders. Acta Ophthalmol 2009; 87: 580–1 CrossRef MEDLINE
e4.Dumic I, Tankosic N, Stojkovic Lalosevic M, Alempijevic T: Sport-related portal vein thrombosis: an unusual complication. Case Reports Hepatol 2017; 2017: 9324246 CrossRef MEDLINE PubMed Central
e5.Gaudard A, Varlet-Marie E, Monnier JF, et al.: Exercise-induced central retinal vein thrombosis: possible involvement of hemorheological disturbances. A case report. Clin Hemorheol Microcirc 2002; 27: 115–22.
e6.Jacobs DJ, Ahmad F, Pathengay A, Flynn HW Jr.: Central retinal vein occlusion after intense exercise: response to intravitreal bevacizumab. Ophthalmic Surg Lasers Imaging 2011; 42 Online: e59–62 CrossRef MEDLINE
e7.Ozawa Y, Koto T, Shinoda H, Tsubota K: Vision loss by central retinal vein occlusion after kaatsu training: a case report. Medicine 2015; 94: e1515 CrossRef MEDLINE PubMed Central
e8.Richard S, Lacour JC, Frotscher B, Enea A, Mione G, Ducrocq X: Report of a recurrent cerebral venous thrombosis in a young athlete. BMC Neurol 2014; 14: 182 CrossRef MEDLINE PubMed Central
e9.Sahraian MA, Mottamedi M, Azimi AR, Moghimi B: Androgen-induced cerebral venous sinus thrombosis in a young body builder: case report. BMC Neurol 2004; 4: 22 CrossRef MEDLINE PubMed Central
e10.Saneto RP, Samples S, Kinkel RP: Traumatic intracerebral venous thrombosis associated with an abnormal golf swing. Headache 2000; 40: 595–8 CrossRef MEDLINE
e11.Walsh M, Moriarity J, Peterson J, Friend G, Chodock R, Rogan M: Portal venous thrombosis in a backpacker. Phys Sportsmed 1996; 24: 75–8 CrossRef .
e12.Wobser H, Scholmerich J, Buttner R: [19-year-old kick-boxer with hematemesis and splenomegaly]. Internist 2010; 51: 213–8 CrossRef MEDLINE
e13.Allana AM, Teo LL, Chuah BY, Liu TC, Cheah WK: Effort thrombosis in a young triathlete: an unusual presentation of painless neck swelling secondary to right brachiocephalic vein thrombosis. Singapore Med J 2011; 52: e37–9.
e14.Alva H, Goyeneche N, Fletcher M, Warrier R: Sports injury or venous thrombosis? Clin Pediatr (Phila) 2019; 58: 1042–4 CrossRef MEDLINE
e15.Aquino BC, Barone EJ: „Effort“ thrombosis of the axillary and subclavian vein associated with cervical rib and oral contraceptives in a young woman athlete. J Am Board Fam Med 1989; 2: 208–11.
e16.Brandao LR, Williams S, Kahr WH, Ryan C, Temple M, Chan AK: Exercise-induced deep vein thrombosis of the upper extremity. 2. A case series in children. Acta Haematol 2006; 115: 221–9 CrossRef MEDLINE
e17.Brunner U: [Effort thrombosis of the athlete]. Z Unfallmed Berufskr 1968; 61: 42–6.
e18.Bushnell BD, Anz AW, Dugger K, Sakryd GA, Noonan TJ: Effort thrombosis presenting as pulmonary embolism in a professional baseball pitcher. Sports Health 2009; 1: 493–9 CrossRef MEDLINE PubMed Central
e19.Carpenetti PE, Grosel JM: Thoracic outlet syndrome presenting with subclavian vein thrombosis. JAAPA 2018; 31: 1–4 CrossRef MEDLINE
e20.Chaudhry MA, Hajarnavis J: Paget-von Schrotter syndrome: primary subclavian-axillary vein thrombosis in sport activities. Clin J Sport Med 2003; 13: 269–71 CrossRef MEDLINE
e21.Ciampi P, Agnoletto M, Scotti C, et al.: Thoracic outlet syndrome in the overhead athlete: a report of 2 cases of subclavius posticus muscle. Clin J Sport Med 2017; 27: e29–e31 CrossRef MEDLINE
e22.DeLisa LC, Hensley CP, Jackson S: Diagnosis of Paget-Schroetter Syndrome/primary effort thrombosis in a recreational weight lifter. Phys Ther 2017; 97: 13–9 CrossRef MEDLINE
e23.Deweber K: Effort thrombosis with sepsis. Phys Sportsmed 1999; 27: 74–86 CrossRef MEDLINE
e24.Esposito MD, Arrington JA, Blackshear MN, Murtagh FR, Silbiger ML: Thoracic outlet syndrome in a throwing athlete diagnosed with MRI and MRA. J Magn Reson Imaging 1997; 7: 598–9 CrossRef MEDLINE
e25.Fundora MP, Rudnick C, Barbur C: Spontaneous upper extremity venous thrombosis in a collegiate soccer player: a case report. Pediatr Emerg Care 2016; 32: 25–8 CrossRef MEDLINE
e26.Hegedus EJ, Cooper L, Cook C: Diagnosis of a rare source of upper extremity symptoms in a healthy woman after weight lifting. J Orthop Sports Phys Ther 2006; 36: 882–6 CrossRef MEDLINE
e27.Hendrickson CD, Godek A, Schmidt P: Paget-Schroetter Syndrome in a collegiate football player. Clin J Sport Med 2006; 16: 79–80 CrossRef MEDLINE
e28.Hurbanek JG, Anderson K, Kaatz S, Shepard A, Workings M, Rand K: Ulnar deep venous thrombosis in a professional baseball pitcher: a case report. Am J Sports Med 2007; 35: 2131–4 CrossRef MEDLINE
e29.Hurley WL, Comins SA, Green RM, Canizzaro J: Atraumatic subclavian vein thrombosis in a collegiate baseball player: a case report. J Athl Train 2006; 41: 198–200.
e30.Ibrahim R, Dashkova I, Williams M, et al.: Paget-Schroetter syndrome in the absence of common predisposing factors: a case report. Thromb J 2017; 15: 20 CrossRef MEDLINE PubMed Central
e31.Ijaopo R, Oguntolu V, DCosta D, Garnham A, Hobbs S: A case of Paget-Schroetter syndrome (PSS) in a young judo tutor: a case report. J Medical Case Rep 2016; 10: 63 CrossRef MEDLINE PubMed Central
e32.Ilhan E, Ture M, Yilmaz C, Arslan M: Subclavian vein thrombosis extending into the internal jugular vein: Paget-von Schroetter Syndrome. Clin Med Res 2009; 1: 178–80 CrossRef
e33.Jackson SS, O‘Brien MJ: Case report: upper extremity deep venous thrombosis in a 19-year-old baseball player. Phys Sportsmed 2014; 42: 163–7 CrossRef MEDLINE
e34.Jourdain V, Goldenberg WD, Matteucci M, Auten J: Paget-Schroetter syndrome: diagnostic limitations of imaging upper extremity deep vein thrombosis. Am J Emerg Med 2016; 34: 683: e1–3 CrossRef MEDLINE
e35.Keisler BD, Armsey TD, 2nd: Paget-Schroetter syndrome in an overhead athlete. Curr Sports Med Rep 2005; 4: 217–9 CrossRef MEDLINE
e36.Kellar J, Trigger C: Thoracic outlet syndrome with secondary Paget Schroetter Syndrome: a rare case of effort-induced thrombosis of the upper extremity. West J Emerg Med 2014; 15: 364–5 CrossRef MEDLINE PubMed Central
e37.Kohen D, Hanhan S, Bellah R: Paget-Schroetter syndrome in a lacrosse player. Del Med J 2013; 85: 77–9.
e38.Korsake K, Meyer F, Dillner J, et al.: Venous thoracic outlet syndrome with acute thrombosis of the subclavian vein (Paget-Schroetter syndrome). Gefässchirurgie 2020; 25: 44–50 CrossRef
e39.Liang HW, Su TC, Hwang BS, Hung MH: Effort thrombosis of the upper extremities related to an arm stretching exercise. J Formos Med Assoc 2006; 105: 182–6 CrossRef
e40.Lutter C, Monasterio E, Schoffl V: Rock climbing-related subclavian vein thrombosis. BMJ Case Rep 2015; 2015: bcr2015212021 CrossRef MEDLINE PubMed Central
e41.McGlinchey PG, Shamsuddin SA, Kidney JC: Effort-induced thrombosis of the subclavian vein—a case of Paget-Schroetter syndrome. Ulster Med J 2004; 73: 45–6.
e42.Medler RG, McQueen DA: Effort thrombosis in a young wrestler. A case report. J Bone Joint Surg Am 1993; 75: 1071–3 CrossRef MEDLINE
e43.Meier MA, Rubenfire M: Life-threatening acute and chronic thromboembolic pulmonary hypertension and subclavian vein thrombosis. Clin Cardiol 2006; 29: 103–6 CrossRef MEDLINE PubMed Central
e44.Nemmers DW, Thorpe PE, Knibbe MA, Beard DW: Upper extremity venous thrombosis. Case report and literature review. Orthop Rev 1990; 19: 164–72.
e45.Nitz AJ, Nitz JA: Vascular thoracic outlet in a competitive swimmer: a case report. Int J Sports Phys Ther 2013; 8: 74–9.
e46.Norinsky AB, Espinosa J, Kianmajd M, DiLeonardo F: Painless acrocyanosis: Paget-Schroetter syndrome secondary to thoracic outlet obstruction from muscle hypertrophy. Am J Emerg Med 2016; 34: 1323.e1–3 CrossRef MEDLINE
e47.Noto T, Hashimoto G, Takagi T, et al.: Paget-Schroetter Syndrome Resulting from thoracic outlet syndrome and KAATSU Training. Intern Med (Tokyo, Japan) 2017; 56: 2595–601 CrossRef MEDLINE PubMed Central
e48.O‘Keefe S, Carmody KA: Paget-Schroetter syndrome diagnosed by bedside emergency physician performed ultrasound: a case report. J Emerg Med 2013; 45: 74–7 CrossRef MEDLINE
e49.Oktar GL, Ergul EG: Paget-Schroetter syndrome. Hong Kong Med J 2007; 13: 243–5.
e50.O‘Leary MR, Smith MS, Druy EM: Diagnostic and therapeutic approach to axillary-subclavian vein thrombosis. Ann Emerg Med 1987; 16: 889–93 CrossRef
e51.Overstreet DS, Skinner WH, Roy TM: Primary thrombosis in the upper extremity. J Ky Med Assoc 1993; 91: 54–7.
e52.Ozcakar L, Donmez G, Yorubulut M, et al.: Paget-Schroetter syndrome forerunning the diagnoses of thoracic outlet syndrome and thrombophilia. Clin Appl Thromb Hemost 2010; 16: 351–5 CrossRef MEDLINE
e53.Piatek LJ: Comment on „Effort thrombosis in the elite throwing athlete“. Am J Sports Med 2003; 31: 636.
e54.Ringhouse B, Jackson C: Bringing to light symptoms and treatments of effort thrombosis (Paget-Schroetter Syndrome) in the military population, a case study. Mil Med 2017; 182: e1826–e9 CrossRef MEDLINE
e55.Roche-Nagle G, Ryan R, Barry M, Brophy D: Effort thrombosis of the upper extremity in a young sportsman: Paget-Schroetter syndrome. Br J Sports Med 2007; 41: 540–1 CrossRef MEDLINE PubMed Central
e56.Rowan TL, Kazemi M: Paget Schroetter Syndrome: a case study of the chiropractor‘s role in recognizing and comanaging an important condition. J Can Chiropr Assoc 2012; 56: 256–61.
e57.Saborowski F: [Over-exertion thrombosis of the axillary vein and the subclavian vein]. Med Klin 1970; 65: 1939–41.
e58.Sancho-Gonzalez I, Bonilla-Hernandez MV, Ibanez-Munoz D, Vicente-Campos D, Chicharro JL: Upper extremity deep vein thrombosis in a triathlete: again intense endurance exercise as a thrombogenic risk. Am J Emerg Med 2017; 35: 808.e1–e3 CrossRef MEDLINE
e59.Sayin A, Gungor H, Bilgin M, Erturk U: Paget-von Schrotter syndrome: upper extremity deep vein thrombosis after heavy exercise. Turk Kardiyol Dern Ars 2012; 40: 354–7 CrossRef MEDLINE
e60.Shennib H, Hickle K, Bowles B: Axillary vein thrombosis induced by an increasingly popular oscillating dumbbell exercise device: a case report. J Cardiothorac Surg 2015; 10: 73 CrossRef MEDLINE PubMed Central
e61.Sheth D, Ferral H, Patel NH: AJR teaching file: weight lifter with swelling in the upper arm. AJR Am J Roentgenol 2007; 189: S21–3 CrossRef MEDLINE
e62.Shimada T, Tounai T, Syoji T, Fukumoto Y: Acute pulmonary embolism due to Paget-Schroetter Syndrome. Intern Med (Tokyo, Japan) 2015; 54: 1875–9 CrossRef MEDLINE
e63.Shiva C, Saini M: Paget-von Schroetter Syndrome: upper extremity deep vein thrombosis after continuous lifting of heavy weight. J Assoc Physicians India 2015; 63: 84–5.
e64.Skerker RS, Flandry FC: Case presentation: painless arm swelling in a high school football player. Med Sci Sports Exerc 1992; 24: 1185–9 CrossRef
e65.Snead D, Marberry KM, Rowdon G: Unique treatment regimen for effort thrombosis in the nondominant extremity of an overhead athlete: a case report. J Athl Train 2009; 44: 94–7 CrossRef MEDLINE PubMed Central
e66.Soric M, Grabovac V: Swollen arm in a former athlete. Hong Kong J Emerg Med 2017; 24: 35–6 CrossRef
e67.Spencer TR, Lagace RE, Waterman G: Effort thrombosis (Paget-Schroetter syndrome) in a 16-year-old male. Am J Case Rep 2014; 15: 333–6 CrossRef MEDLINE PubMed Central
e68.Stake S, du Breuil AL, Close J: Upper extremity deep vein thromboses: the bowler and the barista. Case Rep Vasc Med 2016; 2016: 9631432 CrossRef MEDLINE PubMed Central
e69.Stamm F, Brunner UV: [Axillary and subclavian venous thrombosis in cross-country skiers]. ZFA 1982; 58: 1766–8.
e70.Steele K: Bilateral axillary vein thrombosis. Ulster Med J 1983; 52: 71–2.
e71.Toth F, Kelemen J, Szatai I: [The so called „exertion thrombosis“ of the axillary vein]. Fortschr Geb Rontgenstr Nuklearmed 1963; 99: 484–92 CrossRef
e72.Toya N, Fujita T, Ohki T: Push-up exercise induced thrombosis of the subclavian vein in a young woman: report of a case. Surg Today 2007; 37: 1093–5 CrossRef MEDLINE
e73.Treat SD, Smith PA, Wen DY, Kinderknecht JJ: Deep vein thrombosis of the subclavian vein in a college volleyball player. Am J Sports Med 2004; 32: 529–32 CrossRef MEDLINE
e74.VanWye WR, Pinerola J, Ogle KC, Wallmann HW: Screening for referral by a sports physical therapist reveals an effort thrombosis in a collegiate pitcher: a case report. Int J Sports Phys Ther 2016; 11: 607–13.
e75.Vijaysadan V, Zimmerman AM, Pajaro RE: Paget-Schroetter syndrome in the young and active. J Am Board Fam Med 2005; 18: 314–9 CrossRef MEDLINE
e76.Vogel CM, Jensen JE: „Effort“ thrombosis of the subclavian vein in a competitive swimmer. Am J Sports Med 1985; 13: 269–72 CrossRef MEDLINE
e77.Wong JW, Lai FW, Wilson I: Subclavian vein thrombosis with internal jugular vein extension in an Australian rules football player. Med J Aust 2018; 209: 335–6 CrossRef MEDLINE
e78.Wright RS, Lipscomb AB: Acute occlusion of the subclavian vein in an athlete: diagnosis, etiology and surgical management. J Sports Med 1974; 2: 343–8 CrossRef MEDLINE
e79.Yagi S, Mitsugi M, Sangawa T, Akaike M, Sata M: Paget-Schroetter Syndrome in a baseball pitcher. Int Heart J 2017; 58: 637–40 CrossRef MEDLINE
e80.Zell L, Kindermann W, Marschall F, Scheffler P, Gross J, Buchter A: Paget-Schroetter syndrome in sports activities—case study and literature review. Angiology 2001; 52: 337–42 CrossRef MEDLINE
e81.Zell L, Scheffler P, Marschall F, Buchter A: [Paget-Schroetter syndrome caused by wrestling]. Sportverletz Sportschaden 2000; 14: 31–4 CrossRef MEDLINE
e82.Alhadad A, Acosta S, Sarabi L, Kolbel T: Pulmonary embolism associated with protein C deficiency and abuse of anabolic-androgen steroids. Clin Appl Thromb Hemost 2010; 16: 228–31 CrossRef MEDLINE
e83.Abood KK, Paul MR, Kuo DJ: Deep vein thrombosis in a young, healthy baseball catcher: a case report and review of the literature. J Pediatr Hematol Oncol 2019; 41: 321–3 CrossRef MEDLINE PubMed Central
e84.Ali MS, Kutty MS, Corea JR: Deep vein thrombosis in a jogger. Am J Sports Med 1984; 12: 169 CrossRef MEDLINE
e85.Amann W, Fruhwirth J, Schweiger W, Koch G: [Isolated pelvic vein thrombosis in a young marathon runner]. Sportverletz Sportschaden 1997; 11: 33–4 CrossRef MEDLINE
e86.Botto N, Pasanisi E, Chubuchny V, Andreassi MG: Deep venous thromboembolism after a trauma in a football player double heterozygous for factor V Leiden and prothrombin G20210A mutation: the role of genetic testing in sport. J Cardiol Cases 2012; 6: e133-e6 CrossRef MEDLINE PubMed Central
e87.Bramhall S, Winslet MC: Fatal pulmonary embolus in a keep-fit enthusiast. Br J Hosp Med 1993; 50: 342.
e88.Cauley K, Wright P: Iliac vein compression and pulmonary embolism in a long distance runner: computed tomography and magnetic resonance imaging-a case report. Angiology 2005; 56: 87–91 CrossRef MEDLINE
e89.De Caterina M, Grimaldi E, Passaretti M, et al.: Four cases of venous thrombosis in athletes with silent hereditary defects of the protein C system. Thromb Haemost 2005; 94: 463–4.
e90.Delcau CM: Deep venous thrombosis in umpires. South Med J 1992; 85: 670 CrossRef MEDLINE
e91.Echlin PS, Upshur RE, McKeag DB, Jayatilake HP: Traumatic deep vein thrombosis in a soccer player: a case study. Thromb J 2004; 2: 8 CrossRef MEDLINE PubMed Central
e92.Eichner ER: Venous thromboembolism in ice hockey; progress and challenges in exertional sickling. Curr Sports Med Rep 2019; 18: 157–8 CrossRef MEDLINE
e93.Eichner ER: Venous thromboembolism in athletes: lessons from the Chris Bosh Story. Curr Sports Med Rep 2016; 15: 221–2 CrossRef MEDLINE
e94.Eichner ER: Clots and consequences in athletes. Curr Sports Med Rep 2014; 13: 287–8 CrossRef MEDLINE
e95.Fink ML, Stoneman PD: Deep vein thrombosis in an athletic military cadet. J Orthop Sports Phys Ther 2006; 36: 686–97 CrossRef MEDLINE
e96.Fleming A, Frey D: Extensive venous thrombosis in a runner: progression of symptoms key to diagnosis. Phys Sportsmed 2005; 33: 34–6 CrossRef MEDLINE
e97.Gasser B: [An endurance athlete with calf pain—Probably musculoskeletal?]. Praxis 2018; 107: 783–5.
e98.Gorard DA: Effort thrombosis in an American football player. Br J Sports Med 1990; 24: 15 CrossRef MEDLINE PubMed Central
e99.Harvey JS Jr.: Effort thrombosis in the lower extremity of a runner. Am J Sports Med 1978; 6: 400–2 CrossRef MEDLINE
e100.Hull CM, Harris JA: Venous thromboembolism in physically active people: considerations for risk assessment, mainstream awareness and future research. Sports Med (Auckland, NZ) 2015; 45: 1365–72 CrossRef MEDLINE
e101.Hull CM, Hopkins CL, Purdy NJ, Lloyd RC, Harris JA: A case of unprovoked venous thromboembolism in a marathon athlete presenting atypical sequelae: what are the chances? Scand J Med Sci Sports 2015; 25: 699–705 CrossRef MEDLINE
e102.Hull CM, Rajendran D, Fernandez Barnes A: Deep vein thrombosis and pulmonary embolism in a mountain guide: awareness, diagnostic challenges, and management considerations at altitude. Wilderness Environ Med 2016; 27: 100–6 CrossRef MEDLINE
e103.Hummel C, Geisler PR, Reynolds T, Lazenby T: Posttraumatic deep vein thrombosis in collegiate athletes: an exploration clinical case series. J Athl Train 2018; 53: 497–502 CrossRef MEDLINE PubMed Central
e104.Kaplan Y: Deep vein thrombosis and the athlete: a case study. Int J Disabil Hum Dev 2008; 7: 107–9 CrossRef
e105.Kean J, Pearton A, Fell JW, et al.: Deep vein thrombosis in a well-trained masters cyclist, is popliteal vein entrapment syndrome to blame? J Thromb Thrombolysis 2019; 47: 301–4 CrossRef MEDLINE
e106.Korsten-Reck U, Winterer J, Konig D, Dickhuth HH: [Pulmonary embolism as a cause of a reduced performance capacity of endurance trained men—report of 2 cases]. Dtsch Med Wochenschr (1946) 2010; 135: 1596–600 CrossRef MEDLINE
e107.Mackie JW, Webster JA: Deep vein thrombosis in marathon runners. Phys Sportsmed 1981; 9: 91–6 CrossRef MEDLINE
e108.Nakamura KM, Skeik N, Shepherd RF, Wennberg PW: External iliac vein thrombosis in an athletic cyclist with a history of external iliac artery endofibrosis and thrombosis. Vasc Endovascular Surg 2011; 45: 761–4 CrossRef MEDLINE
e109.Orlik J, McVey J: Deep vein thrombosis and bilateral pulmonary embolism following minor trauma to the popliteal fossa: could this have been avoided? Cjem 2011; 13: 122–6 CrossRef MEDLINE
e110.Papastergiou SG, Koukoulias NE, Tsitouridis I, Natsis C, Parisis CA: Circumflex femoral vein thrombosis misinterpreted as acute hamstring strain. Br J Sports Med 2007; 41: 460–1 CrossRef MEDLINE PubMed Central
e111.Petrin Z, Wowkanech C, Sinha AN, Gupta S, Patel MK: Female runner with painful left thigh swelling: a case of May-Thurner Syndrome. PM R 2018; 10: 227–9 CrossRef MEDLINE
e112.Pilgrim T, Meier B, Khattab AA: Death by patent foramen ovale in a soccer player. J Invasive Cardiol 2013; 25: 162–4.
e113.Roberts WO, Christie DM Jr.: Return to training and competition after deep venous calf thrombosis. Med Sci Sports Exerc 1992; 24: 2–5 CrossRef MEDLINE
e114.Salam A, Chung J, Milner R: External iliac vein stenosis owing to prolonged cycling. Vascular 2010; 18: 111–5 CrossRef MEDLINE
e115.Sanz de la Garza M, Lopez A, Sitges M: Multiple pulmonary embolisms in a male marathon athlete: Is intense endurance exercise a real thrombogenic risk? Scand J Med Sci Sports 2017; 27: 563–6 CrossRef MEDLINE
e116.Schobi R, Kocher F, Vorburger C: [Deep leg vein thrombosis during skiing. A case report]. Schweiz Med Wochenschr 1983; 113: 1402–3.
e117.Sergi D, Cravatari M, Ukmar M, Ponte E: Caval thrombosis in a young athlete. Minerva Cardioangiol 2001; 49: 267–72.
e118.Sidler GJ, Bugaieski SM, Sunderlin J, Weltman A: Difficulty in diagnosing and treating deep vein thrombosis in a competitive basketball player. Phys Sportsmed 1985; 13: 113–8 CrossRef MEDLINE
e119.Stamm F, Brunner UV: [Effort thrombosis of the lower extremities in athletes]. Schweiz Z Sportmed 1983; 31: 22–3.
e120.Tao K, Davenport M: Deep venous thromboembolism in a triathlete. J Emerg Med 2010; 38: 351–3 CrossRef MEDLINE
e121.Theiss JL, Fink ML, Gerber JP: Deep vein thrombosis in a young marathon athlete. J Orthop Sports Phys Ther 2011; 41: 942–7 CrossRef MEDLINE
e122.Thompson TL, Robinson AK, Gilbert C: Deep vein thrombosis of the lower extremity in a football player: a case report. Clin J Sport Med 2006; 16: 372–4 CrossRef MEDLINE
e123.Vucicevic Z, Degoricija V, Alfirevic Z, Sharma M: Inferior vena cava agenesia and a massive bilateral iliofemoral venous thrombosis. Angiology 2008; 59: 510–3 CrossRef MEDLINE
e124.Wong C, Bracker M: Coagulopathy presenting as calf pain in a racquetball player. J Fam Pract 1993; 37: 390–3.
e125.Croyle PH, Place RA, Hilgenberg AD: Massive pulmonary embolism in a high school wrestler. JAMA 1979; 241: 827–8 CrossRef CrossRef
e126.Devilbiss Z, O‘Connor F: Pulmonary embolism in a collegiate softball athlete: a case report. Curr Sports Med Rep 2020; 19: 53–7 CrossRef MEDLINE
e127.Erickson K, Powers ME: Factor V leiden thrombophilia in a female collegiate soccer athlete: a case report. J Athl Train 2013; 48: 431–5 CrossRef MEDLINE PubMed Central
e128.Kahanov L, Daly T: Bilateral pulmonary emboli in a collegiate gymnast: a case report. J Athl Train 2009; 44: 666–71 CrossRef MEDLINE PubMed Central
e129.Landesberg WH: Pulmonary embolism in a female collegiate cross-country runner presenting as nonspecific back pain. J Chiropr Med 2012; 11: 215–20 CrossRef MEDLINE PubMed Central
e130.Larsen E: Static or dynamic repair of chronic lateral ankle instability. A prospective randomized study. Clin Orthop Relat Res 1990; 257: 184–92 CrossRef
e131.Moffatt K, Silberberg PJ, Gnarra DJ: Pulmonary embolism in an adolescent soccer player: a case report. Med Sci Sports Exerc 2007; 39: 899–902 CrossRef MEDLINE
e132.Ouyang DL, Chow AY, Daly TK, Garza D, Matheson GO: Bilateral pulmonary emboli in a competitive gymnast. Clin J Sport Med 2010; 20: 64–5 CrossRef PubMed Central
e133.Rand K, Sherman CB: An unusual case of pulmonary embolism in a young healthy female competitive rower. R I Med J (2013) 2014; 97: 57–9.
e134.Tsung AH, Williams JB, Whitford AC: Sixteen-year-old athlete with chest pain and shortness of breath due to pulmonary emboli. J Emerg Med 2013; 44: 939–42 CrossRefMEDLINE
e135.Bereczky Z, Muszbek L: Factor XIII and venous thromboembolism. Semin Thromb Hemost 2011; 37: 305–14 CrossRef MEDLINE
e136.Gohil R, Peck G, Sharma P: The genetics of venous thromboembolism. A meta-analysis involving approximately 120,000 cases and 180,000 controls. Thromb Haemost 2009; 102: 360–70 CrossRef MEDLINE