DÄ internationalArchive24/2021Bullous Autoimmune Dermatoses

Review article

Bullous Autoimmune Dermatoses

Clinical Features, Diagnostic Evaluation, and Treatment Options

Dtsch Arztebl Int 2021; 118: 413-20. DOI: 10.3238/arztebl.m2021.0136

van Beek, N; Zillikens, D; Schmidt, E

Background: Bullous autoimmune dermatoses are a clinically and immunopathologically heterogeneous group of diseases, characterized clinically by blisters or erosions of the skin and/or mucous membranes. In Germany, their prevalence is approximately 40 000 cases nationwide, and their incidence approximately 20 new cases per million people per year.

Methods: This review is based on publications that were retrieved by a selective search of the literature focusing on the current German and European guidelines.

Results: Recent years have seen the publication of guidelines, controlled prospective clinical trials, and multicenter diagnostic studies improving both diagnosis and therapy. Specific monovalent and multivariate serological test systems and pattern analysis of tissue-bound autoantibodies allow identification of the target antigens in 80–90% of patients. This enables the precise classification of disease entities, with implications for treatment selection and disease outcome. In 2019, the anti-CD20 antibody rituximab was approved by the European Medicines Agency for the treatment of moderate and severe pemphigus vulgaris, with an ensuing marked improvement in the care of the affected patients. To treat mild and moderate bullous pemphigoid, topical clobetasol proprionate is recommended, in severe disease, combined with systemic treatment, i.e. usually (a) prednisolone p.o. at an initial dose of 0.5mg/kg/d , (b) an immunomodulant, e.g. dapsone or doxycycline, or (c) prednisolone plus an immunomodulant.

Conclusion: The early recognition and precise diagnostic evaluation of bullous autoimmune dermatoses now enables improved, often interdisciplinary treatment, in accordance with the available guidelines. Current research projects are focused on new treatment approaches, an improved understanding of the underlying pathophysiology, and further refinements of diagnostic techniques.

LNSLNS

Autoimmune bullous diseases (AIBD) are prototypical autoantibody-mediated autoimmune diseases in which the effects of the autoantibodies are directly visible on the skin and/or on mucous membranes. If left untreated, these diseases are potentially life-threatening due to superinfection, fluid loss, and severely restricted food intake (1, 2, 3, 4, e1, e2).

Clinically, depending on the disease entity, vesicles, blisters, pustules, erosions, excoriations, and erythema on the skin and mucous membranes can be seen. In AIBD, autoantibodies are directed against structural proteins of the skin; in pemphigus diseases, they are directed against desmosomal proteins, which connect neighboring keratinocytes/epithelial cells, and in pemphigoid diseases, against proteins of the basement membrane zone, which connect the epidermis/epithelium and the dermis/lamina propria (Figure 1).

Schematic diagram of the autoantigens in pemphigus and pemphigoid diseases
Figure 1
Schematic diagram of the autoantigens in pemphigus and pemphigoid diseases

Epidemiology

The frequency of AIBD differs significantly depending on the geographic region and population evaluated (2, e3, e4). In Germany and central Europe, bullous pemphigoid is by far the most common AIBD (5, e5, e6, e7, e8, e9, e10) (Table 1), with an increasing incidence in recent decades (e8, e11, e12, e13). Possible causes for the increasing incidence of bullous pemphigoid may include an aging population, the association with increasingly frequent neurological diseases and certain medications (see below), and a greater awareness of atypical variants without blistering (overview in [e4]).

Incidence and Prevalence
Table 1
Incidence and Prevalence

The most common AIBDs in children are linear IgA dermatosis and pemphigus vulgaris (6, e14). An association with the human leukocyte antigens HLA-DRB1*04 and HLA-A*10 and a polymorphic variant in the ST18 gene have been described for pemphigus vulgaris, while an overrepresentation of HLA-DQB1*03:01 and polymorphism in the mitochondrial ATP8 gene has been described for bullous pemphigoid (1, 2, e3, e15, e16).

Clinical features

Pemphigus diseases

Pemphigus diseases can be classified in 4 main forms based on clincial and immunopathological features: pemphigus vulgaris, in about 70–80% of patients; pemphigus foliaceus, in about 20%; paraneoplastic pemphigus, in about 5%; and IgA pemphigus, in 1–3% (Table 2) (2).

Target antigens of autoimmune bullous dermatoses and serological diagnostics
Table 2
Target antigens of autoimmune bullous dermatoses and serological diagnostics

In pemphigus vulgaris, the mucous membranes close to the surface are always affected, including primarily the oral cavity (Figure 2a). Erosions predominate and can also manifest on the mucosa of the pharynx, larynx, esophagus, and genitalia (2, 3). In about half of the cases, flaccid blisters and erosions also appear on the skin, which may involve large areas. This led to a mortality of over 80% before the introduction of the corticosteroids (2, e3, 5). At present, the mortality of patients with pemphigus vulgaris is still two to three times higher than in the general population (e3, 5).

Clinical presentation of selected cases of autoimmune bullous dermatoses
Figure 2
Clinical presentation of selected cases of autoimmune bullous dermatoses

In pemphigus foliaceus, only the skin is affected, with erosions and scaly crusts, predominantly in seborrheic areas on the trunk and head (Figure 2c) (2, 3).

Paraneoplastic pemphigus is associated with neoplasia and may clinically resemble pemphigus vulgaris. Characteristic features are pronounced stomatitis, lip involvement, and polymorphic, often lichenoid, skin changes (2, 7, e17). With a mortality of 75–90%, the prognosis is unfavorable, primarily due to neoplasm and bronchiolitis obliterans, which occurs in 5–20% of cases (e3, e18, e19).

In IgA pemphigus, pustules and erosions are the most prominent lesions (e20, e21, e22) (Table 2). Furthermore, neonatal pemphigus, pemphigus herpetiformis, and endemic pemphigus foliaceus are described as separate entities; pemphigus vegetans is considered a clinical variant of pemphigus vulgaris with predominant involvement of the axillary and inguinal areas. (2, 3, e23).

The differential diagnoses of pemphigus vulgaris and paraneopalstic pemphigus are severe drug reactions, such as Steven–Johnson syndrome, toxic epidermal necrolysis, stomatitis due to herpes simplex virus, hereditary epidermolysis, mucosal lichen planus, and mucous membrane pemphigoid (MMP). Pemphigus foliaceus must be differentiated from seborrheic dermatitis and impetigo, and IgA pemphigus, from pustular psoriasis as well as from pustular reactions to drugs.

Pemphigoid diseases

Bullous pemphigoid presents with tense blisters (Figure 2b), erosions, and urticarial erythema. Non-bullous forms are found in around 20% of cases (e24, e25). Characteristic features are the often severe pruritus and manifestation in old age (mean age of onset, 78 years). Therefore, bullous pemphigoid should be excluded in case of chronic pruritus in old age. Mucosal involvement can be seen in 10–20% of patients (8, 9, 10, e26).

Associated diseases that have been described include cardiovascular diseases, psoriasis, diabetes mellitus, hematological malignancies, and degenerative neurological diseases, the latter mostly preceding the skin disease and affecting 30–50% of patients (11, 12, e27, e28, e29). Associations with the use of dipeptidyl peptidase IV inhibitors have also been observed, particularly with vildagliptin, as well as (although to a lesser degree) with spironolactone, loop diuretics, and drugs for Parkinson’s disease (13, e27, e29, e30, e31, e32, e33). Gliptins should be replaced by other antidiabetic drugs in any case, and the other drugs switched to alternatives when possible. The 1-year mortality rates have been reported to range between 8% and 41% (1, e7, e10, e13, e34, e35). Differential diagnoses are bullous erysipelas, impetigo contagiosa, adverse drug reactions, herpes zoster, urticarial eczema, bullous reactions to insect stings, artifactual changes, hereditary epidermolysis, and other pemphigoid diseases.

Predominant involvement of mucous membranes supports the clinical diagnosis of MMP (Figures 2d, e). The mucous membranes of the mouth and the conjunctiva are particularly affected, as well as (less frequently) mucous membranes of the nose, pharynx, anogenital region, larynx, esophagus, and trachea. About 25–30% of patients present with additional erosions and blisters on the skin (1, 14).

Lesions of the conjunctiva, nose, larynx, esophagus and trachea in particular heal with scarring, which can lead to blindness, chronic hoarseness, difficulties in breathing and dysphagia, respectively. The main autoantigens are BP180 (in around 75% of patients) and laminin 332 (in up to 25%). Anti-laminin 332 MMP is associated with malignancy in 25–30% of cases, and in these patients, a tumor search is required (14, 15, e36). MMP has a differential diagnosis similar to that of pemphigus vulgaris.

Pemphigoid gestationis usually occurs in the third trimester of pregnancy, with severe pruritus and urticarial erythematous plaques, initially mainly in the periumbilical region. The disease resolves postpartum but usually recurs in subsequent pregnancies (1, e2, e37). As main differential diagnoses, polymorphic eruption of pregnancy and urticaria are to be distinguished. Linear IgA disease is characterized by tense vesicles and blisters, often arranged in an annular pattern, but may also resemble bullous pemphigoid and is a common AIBD in childhood (6, e14). In adults, induction by drugs should be considered; notably, about half of the drug-induced cases are caused by vancomycin (e38). Anti-p200 pemphigoid clinically resembles bullous pemphigoid but shows more palmoplantar involvement (e39). In epidermolysis bullosa acquisita, the inflammatory variant mimics bullous pemphigoid, MMP, or linear IgA disease. In the mechanobullous variant, which is present in a third of patients, blisters appear on areas most stressed by mechanical forces, such as elbows, knees, and feet. Involvement of the mucous membranes and healing with scarring are common in this variant (16, 17, e40); the most important differential diagnosis is porphyria cutanea tarda.

Dermatitis herpetiformis, which is the cutaneous manifestation of celiac disease, is characterized by severe pruritus, excoriated papules, and vesicles with predilection for knees, elbows, and buttocks (4, 18).

Diagnosis

AIBD cannot be diagnosed on the basis of the clinical picture alone. Rather, detection of tissue-bound and/or circulating autoantibodies is required (10).

Direct immunofluorescence

Tissue-bound autoantibodies (primarily IgG and IgA) and complement deposits are detected using direct immunofluorescence (IF) in a perilesional skin/mucosal biopsy and continue to represent the gold standard in AIBD diagnostics (9, 10, 17, 18, 19, 20, 21). Direct IF allows a differentiation between pemphigoid diseases with linear deposits on the basement membrane (Figure 3a, b), pemphigus diseases with intercellular fluorescence in the epithelium (Figure 3c), and dermatitis herpetiformis with granular deposits of IgA along the basement membrane and/or in the tips of the dermal papillae. Linear and intercellular fluorescence together indicate paraneoplastic pemphigus (7, e17).

Direct immunofluorescence of perilesional biopsies for the detection of tissue-bound autoantibodies (a–c) and indirect immunofluorescence of the desmoglein 3–specific biochip (d).
Figure 3
Direct immunofluorescence of perilesional biopsies for the detection of tissue-bound autoantibodies (a–c) and indirect immunofluorescence of the desmoglein 3–specific biochip (d).

Of the pemphigoid diseases, linear IgA disease can be differentiated based on predominant IgA deposits along the basement membrane, and epidermolysis bullosa acquisita, based on serration pattern analysis (1). Almost all pemphigoid diseases show an n-serrated pattern (Figure 3a); except epidermolysis bullosa acquisita and bullous lupus erythematosus which reveal a u-serrated pattern (Figure 3b) (22, e41, e42).

Serological diagnostics

Circulating autoantibodies can be detected in the serum of about 90% of AIBD patients. In contrast, this is only possible for about half of the patients with epidermolysis bullosa acquisita or MMP (16, 17, e43). A serological diagnosis in combination with the clinical picture allows an exact assignment to the individual entities and thus a tailored therapy and a more precise prognosis. Anti-laminin 332 MMP and paraneoplastic pemphigus are both facultative and obligatory paraneoplasia, respectively, and a search for an underlying malignancy is indicated (7, 15, e36, e44).

To screen for suspected AIBD, an indirect IF on monkey esophagus and 1 M NaCl–split skin is carried out, which enables a differentiation into pemphigus and pemphigoid diseases (Figure 4a–c). The salt-split skin allows a subdivision of binding to the epidermal roof (in the case of autoantibodies against BP180 and BP230) or to the floor (autoantibodies against p200 antigen, laminin 332, and type VII collagen) of the artificial split (Figures 1 and 4a–c, Table 2) (1, 2, 10, 18, 19, e45).

Indirect immunofluorescence on monkey esophagus, salt-split skin, and selected biochips
Figure 4
Indirect immunofluorescence on monkey esophagus, salt-split skin, and selected biochips

For the detection of autoantibodies against the most important target antigens of AIBD, sensitive and specific enzyme-linked immunosorbent assays (ELISA) using the recombinant immunodominant regions of the target antigens are available (Euroimmun, Lübeck; MBL, Nagoya, Japan; Table 2) (10, e46, e47, e48, e49, e50, e51, e52). For instance, ELISA can detect circulating antibodies against desmoglein 3 in the sera of patients with pemphigus vulgaris, and circulating antibodies against desmoglein 1 in patients with pemphigus foliaceus, in >95% of the cases (3, 23, e47, e52). Serum IgG antibodies against BP180 NC16A can be detected in 80–90% of the sera from patients with bullous pemphigoid.

The diagnostic sensitivity of bullous pemphigoid can be increased by 5–8% by the additional use of the BP230 ELISA, with which 50–60% of patients react (e46, e53). Serum autoantibodies against BP180 NC16A are also found in patients with pemphigoid gestationis as well as in 30–50% of patients with MMP who have serum antibodies against the epidermal side of human split skin (e54, e55, e56, e57).

For circulating autoantibodies against desmoglein 1, desmoglein 3, BP180 NC16A, and type VII collagen, a correlation with disease activity has been shown (3, e47, e48, e58, e59); their determination via ELISA during the course of the disease is recommended to be indcluded in therapeutic decisions (17, 21, 24). Instead of a step-by-step diagnostic approach, multivariate ELISA systems can be used in which autoantibodies against several target antigens are analyzed in parallel (e51, e60). The indirect IF-based BIOCHIP technology offers a comparable option. It assembles several substrates in so-called BIOCHIP mosaics in a single incubation field of a standard laboratory slide (15, 23, e61, e62, e63) (Figures 3d and 4d–f).

The detection of specific autoantibodies that are not (yet) included in commercial assays is carried out in some specialized laboratories (Table 2 and Box).

Dermatology departments in Germany that carry out more than 500 non-commercial test systems/year
Box
Dermatology departments in Germany that carry out more than 500 non-commercial test systems/year

Pathophysiology

The pathophysiology of pemphigus and pemphigoid diseases has been presented in detail in recent reviews (1, 2, 3, 25, e1, e64, e65, e66, e67). A common feature of all AIBDs is the presence of T cells and pathogenetically relevant autoantibodies against the respective autoantigens in genetically susceptible individuals (e68, e69, e70, e71, e72, e73, e74, e75). The trigger factors that lead to a breach of tolerance are still largely unknown.

In pemphigus, autoantibody binding is followed by the desmogleins being depleted from the cell surface and further signal transducing events, among others via the p38MAP kinase. Both lead to a weakening of the cell–cell interactions and to the separation of the keratinocytes/epithelial cells called acantholysis (3, 25, e1, e64).

In pemphigoid diseases, the binding of the autoantibodies leads to the local activation of complement and subsequently to the infiltration of inflammatory cells, such as eosinophils, neutrophils, macrophages, and T cells, into the upper dermis. The release of specific proteases from granulocytes, macrophages, and activated mast cells ultimately results in degradation of the proteins of the dermal–epidermal junction, which appears histologically as subepidermal clefts and clinically as tense blisters and erosions (1, e76). C5aR1, leukotriene B4, the neonatal Fc receptor, eotaxin, the IL-5 receptor, and IL-17A have been identified as key mediators of pemphigoid diseases; clinical studies are currently underway in which some of these are investigated (26, 27, 28, 29, e67, e77, e78, e79, e80, e81, e82, e83).

Therapy

German and/or European guidelines have been formulated for bullous pemphigoid, pemphigus vulgaris/foliaceus, MMP, and dermatitis herpetiformis (9, 18, 21, 24, 30, 31, e84) (eTables 1 and 2). In addition to an interdisciplinary approach with ENTs, ophthalmologists, gynecologists, general practitioners, infectiologists, paediatricians, and, if necessary, other specialist disciplines, cooperation with patient support groups is recommended, for example with the German Pemphigus und Pemphigoid Selbsthilfegruppe (www.pemphigus-pemphigoid-selbsthilfe.de) or the International Pemphigus and Pemphigoid Foundation (www.pemphigus.org).

Pemphigus diseases

First-line therapy for pemphigus vulgaris/foliaceus has changed significantly following the approval of the anti-CD20 antibody rituximab for the treatment of moderate and severe pemphigus vulgaris by the European Medicines Agency (EMA) and the US American Food and Drug Administration (FDA). Joly et al. demonstrated that treatment of patients with newly diagnosed pemphigus vulgaris/foliaceus with rituximab (2 × 1 g plus 0.5 g each, in months 12 and 18) plus prednisolone (0.5–1.0 mg/kg/day p.o. for three to six months) was significantly more effective and safer than therapy with oral prednisolone 1.0–1.5 mg/kg/day for 12–18 months (55% difference, 95% confidence interval: [38.4; 71, 7]; p < 0.0001) (32). For moderate and severe pemphigus vulgaris/foliaceus, administration of rituximab (2 × 1 g at an interval of 2–3 weeks) is recommended in combination with systemic corticosteroids (tapering over 3–6 months). Alternatively, conventional therapy with prednisolone p.o. 1.0 mg/kg/day plus azathioprine or mycophenols can be applied (eTable 2) (24). As an alternative to oral corticosteroids, intravenous corticosteroid pulses can be used (24, 31). The guideline recommends another infusion of rituximab (1 g) after six months in the event of relapse or incomplete remission; in refractory patients, the guideline also recommends high-dose intravenous immunoglobulins (IVIg) or immune apheresis (eTable 2) (24, 31).

Treatment options for pemphigus diseases
eTable 2
Treatment options for pemphigus diseases

Currrent clinical trials for treatment of pemphigus are evaluating efficacy and safety of inhibition of the Bruton tyrosine kinase or the neonatal Fc receptor, depletion of desmoglein 3–specific B cells using chimeric autoantibody receptor T cells (CAART), and tolerance induction by nanoparticles (27, 33, e1, e85, e86).

Pemphigoid diseases

For bullous pemphigoid, the current German AWMF guideline recommends a whole-body application of topical 0.05% clobetasol propionate (40 g/day), a superpotent glucocorticosteroid of class IV, for mild as well as moderate cases, if necessary; for severe cases, this is usually recommended in combination with systemic treatment (24). In a controlled randomized study, topical 0.05% clobetasol propionate (40 g/day) had a comparable effect in patients with bullous pemphigoid as prednisolone (0.5 mg/kg/day) (disease control in moderate cases, topical 100% [95; 100]) versus oral 95% [87; 99], p = 0.06; in severe cases, topical 99% [94; 100] versus oral 91% [83; 96], p = 0.02) (34). As a systemic treatment, prednisolone is given orally at 0.5 mg/kg/day, possibly in combination with the (potentially steroid-sparing) agents azathioprine, dapsone, doxycycline, methotrexate, mycophenolate mofetil, or mycophenolate sodium. Alternatively, dapsone, doxycycline, or methotrexate can also be used as the only systemic treatment without oral corticosteroid (24) (see further details, eTable 1). In randomized controlled trials in patients with bullous pemphigoid, doxycycline was associated with significantly fewer serious adverse events than oral prednisolone (difference 19.0% [7.9; 30.1], p = 0.001), and dapsone was associated with a lower cumulative corticosteroid dose than azathioprine (p = 0.06) (35, 36). IVIg, immunoadsorption, rituximab, cyclophosphamide, or omalizumab can be used in refractory patients (eTable 1) (24, 37, 38, 39, e87).

Treatment options for pemphigoid diseases and dermatitis herpetiformis
eTable 1
Treatment options for pemphigoid diseases and dermatitis herpetiformis

The severity of MMP is distinguished on the basis of the risk of scarring, as mild/moderate with exclusive involvement of the skin and oral mucosa, or as severe, with involvement of the eyes, nasal mucosa, pharynx, larynx, esophagus, or trachea (30, e84). In the case of mild/moderate MMP, topical treatment with highly potent topical glucocorticoids, possibly in combination with immunomodulators, is often sufficient. For severe MMP, treatment with dapsone combined with systemic corticosteroid (prednisolone, either orally 0.5–1.5 mg/kg/day or as an intravenous pulse therapy) or cyclophosphamide (orally or intravenously) is recommended (e84). In the case of eye involvement, topical treatments that can be used in addition to lubricants include corticosteroids, tetracyclines, and cyclosporine (e84). Timely interdisciplinary treatment of inflammation is crucial before irreversible scarring occurs, especially in the eyes.

The systemic treatments for refractory MMP and other pemphigoid diseases and dermatitis herpetiformis are summarized in eTable 1.

Acknowledgements

We would like to thank Carolin Mahlerwein (Lübeck) for the schematic overview figure, Ingeborg Atefi and Marina Kongsback-Reim (Lübeck) for help in preparing the flourescent images, and the patients for the clinical images. This work was supported by the strukturelle Förderung des Exzellenz Cluster Precision Medicine in Chronic Inflammation (EXC2167) This work was supported by structural funding from the Cluster of Excellence Precision Medicine in Chronic Inflammation (PMI) (grant number EXC 2167) from the German Research Foundation.

Conflict of Interest Statement
Dr. van Beek has received reimbursement of meeting participation fees and travel expenses from Actelion, speaking honoraria from Infinite Science, and support for shared research projects from Euroimmun.

Prof. Zillikens has received consulting honoraria from Almirall, arGEN-X, Pincell, Roche Pharma, and UCB, speaking honoraria and reimbursement of travel expenses and conference fees from Novartis, Roche Pharma, Abbvie, UCB, Janssen, Almirall, and Fresenius, and support for shared research and development projects from Dompe, Euroimmun, and Fresenius.

Prof. Schmidt has received consulting honoraria from Argen X, UCB, AstraZeneca, Roche, Topas, Almirall, and Thermo Fischer, reimbursement of meeting participation fees and travel expenses as well as speaking honoraria from Biotest, Novartis, and Fresenius, and research support (third-party funds) from UCB, Biotest, Incyte, Novartis, Euroimmun, Argen X, AstraZeneca, Dompe, Admirx, Synthon/Biondis, and Fresenius.

Manuscript received on 3 August 2020, revised version accepted on 27 January 2021.

Translated from the original German by Veronica A. Raker, PhD

Corresponding author
Dr. med. Nina van Beek

Department of Dermatology, Venereology, and Allergology

University Medical Center Schleswig-Holstein, Campus Lübeck

Ratzeburger Allee 160

23538 Lübeck, Germany

nina.vanbeek@uksh.de

Cite this as:
van Beek N, Zillikens D, Schmidt E: Bullous autoimmune dermatoses: clinical features, diagnostic evaluation, and treatment options. Dtsch Arztebl Int 2021; 118: 413–20. DOI: 10.3238/arztebl.m2021.0136

►Supplementary material

eReferences and eTables:
www.aerzteblatt-international.de/m2021.0136

1.
Schmidt E, Zillikens D: Pemphigoid diseases. Lancet 2013; 381: 320–32 CrossRef MEDLINE
2.
Schmidt E, Kasperkiewicz M, Joly P: Pemphigus. Lancet 2019; 394: 882–94 CrossRef MEDLINE
3.
Kasperkiewicz M, Ellebrecht CT, Takahashi H, et al.: Pemphigus. Nat Rev Dis Primers 2017; 3: 17026 CrossRef MEDLINE PubMed Central
4.
Sardy M, Karpati S, Merkl B, Paulsson M, Smyth N: Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis. J Exp Med 2002; 195: 747–57 CrossRef MEDLINE PubMed Central
5.
Langan SM, Smeeth L, Hubbard R, Fleming KM, Smith CJ, West J: Bullous pemphigoid and pemphigus vulgaris—incidence and mortality in the UK: population based cohort study. Bmj 2008; 337: a180 CrossRef MEDLINE PubMed Central
6.
Hubner F, Konig IR, Holtsche MM, Zillikens D, Linder R, Schmidt E: Prevalence and age distribution of pemphigus and pemphigoid diseases among pediatric patients in Germany. J Eur Acad Dermatol Venereol 2020; 34: 2600–5 CrossRef MEDLINE
7.
Anhalt GJ: Paraneoplastic pemphigus. J Investig Dermatol Symp Proc 2004; 9: 29–33 CrossRef MEDLINE
8.
Murrell DF, Daniel BS, Joly P, et al.: Definitions and outcome measures for bullous pemphigoid: recommendations by an international panel of experts. J Am Acad Dermatol 2012; 66: 479–85 CrossRef MEDLINE PubMed Central
9.
Feliciani C, Joly P, Jonkman MF, et al.: Management of bullous pemphigoid: the European Dermatology Forum consensus in collaboration with the European Academy of Dermatology and Venereology. Br J Dermatol 2015; 172: 867–77 CrossRef MEDLINE
10.
Schmidt E, Goebeler M, Hertl M, et al.: S2k guideline for the diagnosis of pemphigus vulgaris/foliaceus and bullous pemphigoid. J Dtsch Dermatol Ges 2015; 13: 713–27 CrossRef CrossRef MEDLINE
11.
Kibsgaard L, Rasmussen M, Lamberg A, Deleuran M, Olesen AB, Vestergaard C: Increased frequency of multiple sclerosis among patients with bullous pemphigoid: a population-based cohort study on comorbidities anchored around the diagnosis of bullous pemphigoid. Br J Dermatol 2017; 176: 1486–91 CrossRef MEDLINE
12.
Schulze F, Neumann K, Recke A, Zillikens D, Linder R, Schmidt E: Malignancies in pemphigus and pemphigoid diseases. J Invest Dermatol 2015; 135: 1445–7 CrossRef MEDLINE
13.
Kridin K, Cohen AD: Dipeptidyl-peptidase IV inhibitor-associated bullous pemphigoid: a systematic review and meta-analysis. J Am Acad Dermatol 2018; S0190–9622(18)32660–4 CrossRef
14.
Murrell DF, Marinovic B, Caux F, et al.: Definitions and outcome measures for mucous membrane pemphigoid: recommendations of an international panel of experts. J Am Acad Dermatol 2015; 72: 168–74 CrossRef MEDLINE
15.
Goletz S, Probst C, Komorowski L, et al.: A sensitive and specific assay for the serological diagnosis of antilaminin 332 mucous membrane pemphigoid. Br J Dermatol 2019; 180: 149–56 CrossRef MEDLINE
16.
Vorobyev A, Ludwig RJ, Schmidt E: Clinical features and diagnosis of epidermolysis bullosa acquisita. Expert Rev Clin Immunol 2017; 13: 157–69 CrossRef MEDLINE
17.
Prost-Squarcioni C, Caux F, Schmidt E, et al.: International Bullous Diseases Group: consensus on diagnostic criteria for epidermolysis bullosa acquisita. Br J Dermatol 2018; 179: 30–41 CrossRef MEDLINE
18.
Görög A, Antiga E, Caproni M, et al.: S2k guideline (consensus statement) for diagnosis and therapy of dermatitis herpetiformis initiated by the European Academy of Dermatology and Venereology (EADV). J Eur Acad Dermatol Venereol 2021; 35:1251–77 CrossRef MEDLINE
19.
van Beek N, Zillikens D, Schmidt E: Diagnostik blasenbildender Autoimmundermatosen. J Dtsch Dermatol Ges 2018; 16: 1077–92 CrossRef
20.
Harman KE, Brown D, Exton LS, et al.: British Association of Dermatologists‘ guidelines for the management of pemphigus vulgaris 2017. Br J Dermatol 2017; 177: 1170–201 CrossRef MEDLINE
21.
Hertl M, Jedlickova H, Karpati S, et al.: Pemphigus. S2 Guideline for diagnosis and treatment—guided by the European Dermatology Forum (EDF) in cooperation with the European Academy of Dermatology and Venereology (EADV). J Eur Acad Dermatol Venereol 2015; 29: 405–14 CrossRef MEDLINE
22.
Terra JB, Meijer JM, Jonkman MF, Diercks GF: The n- vs. u-serration is a learnable criterion to differentiate pemphigoid from epidermolysis bullosa acquisita in direct immunofluorescence serration pattern analysis. Br J Dermatol 2013; 169: 100–5 CrossRef MEDLINE
23.
van Beek N, Kruger S, Fuhrmann T, et al.: Multicenter prospective —study on multivariant diagnostics of autoimmune bullous dermatoses using the BIOCHIP(TM) technology. J Am Acad Dermatol 2020; 83: 1315–22 CrossRef MEDLINE
24.
Schmidt E, Sticherling M, Sardy M, et al.: S2k guidelines for the treatment of pemphigus vulgaris/foliaceus and bullous pemphigoid: 2019 update. J Dtsch Dermatol Ges 2020; 18: 516–26 CrossRef MEDLINE
25.
Spindler V, Eming R, Schmidt E, et al.: Mechanisms causing loss of keratinocyte cohesion in pemphigus. J Invest Dermatol 2018; 138: 32–7 CrossRef MEDLINE
26.
Chakievska L, Holtsche MM, Kunstner A, et al.: IL-17A is functionally relevant and a potential therapeutic target in bullous pemphigoid. J Autoimmun 2019; 96: 104–12 CrossRef MEDLINE
27.
Kasprick A, Hofrichter M, Smith B, et al.: Treatment with anti-neonatal Fc receptor (FcRn) antibody ameliorates experimental epidermolysis bullosa acquisita in mice. Br J Pharmacol 2020; 177: 2381–92 CrossRef MEDLINE PubMed Central
28.
Izumi K, Bieber K, Ludwig RJ: Current clinical trials in pemphigus and pemphigoid. Front Immunol 2019; 10: 978 CrossRef MEDLINE PubMed Central
29.
Maglie R, Hertl M: Pharmacological advances in pemphigoid. Curr Opin Pharmacol 2019; 46: 34–43 CrossRef MEDLINE
30.
Rashid H, Lambert A, Alberti-Violetti S, et al.: S3 guideline on the diagnosis and management of mucous membrane pemphigoid initiated by the European Academy of Dermatology and Venereology (EADV) – part I: Clinical presentation and outcome measurements for disease assessment. J Eur Acad Dermatol Venereol (in print).
31.
Joly P, Horwath B, Patsatsi A, et al.: Updated S2K guidelines on the management of pemphigus vulgaris and foliaceus initiated by the european academy of dermatology and venereology (EADV). J Eur Acad Dermatol Venereol 2020; 34: 1900–13 CrossRef MEDLINE
32.
Joly P, Maho-Vaillant M, Prost-Squarcioni C, et al.: First-line rituximab combined with short-term prednisone versus prednisone alone for the treatment of pemphigus (Ritux 3): a prospective, multicentre, parallel-group, open-label randomised trial. Lancet 2017; 389: 2031–40 CrossRef
33.
Ellebrecht CT, Bhoj VG, Nace A, et al.: Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 2016; 353: 179–84 CrossRef MEDLINE PubMed Central
34.
Joly P, Roujeau JC, Benichou J, et al.: A comparison of oral and topical corticosteroids in patients with bullous pemphigoid. N Engl J Med 2002; 346: 321–7 CrossRef MEDLINE
35.
Sticherling M, Franke A, Aberer E, et al.: An open, multicentre, randomized clinical study in patients with bullous pemphigoid comparing methylprednisolone and azathioprine with methylprednisolone and dapsone. Br J Dermatol 2017; 177: 1299–305 CrossRef MEDLINE
36.
Williams HC, Wojnarowska F, Kirtschig G, et al.: Doxycycline versus prednisolone as an initial treatment strategy for bullous pemphigoid: a pragmatic, non-inferiority, randomised controlled trial. Lancet 2017; 389: 1630–8 CrossRef
37.
Enk A, Hadaschik E, Eming R, et al.: European Guidelines (S1) on the use of high-dose intravenous immunoglobulin in dermatology. J Dtsch Dermatol Ges 2017; 15: 228–41 CrossRef MEDLINE
38.
Kremer N, Snast I, Cohen ES, et al.: Rituximab and omalizumab for the treatment of bullous pemphigoid: a systematic review of the literature. Am J Clin Dermatol 2019; 20: 209–16 CrossRef MEDLINE
39.
Ujiie H, Iwata H, Yamagami J, et al.: Japanese guidelines for the management of pemphigoid (including epidermolysis bullosa acquisita). J Dermatol 2019; 46: 1102–35 CrossRef MEDLINE
40.
van Beek N, Weidinger A, Schneider SW, et al.: Incidence of pemphigoid diseases in Northern Germany in 2016—first data from the Schleswig-Holstein Registry of autoimmune bullous diseases. J Eur Acad Dermatol Venereol 2021; 35: 1197–202 CrossRef MEDLINE
e1.
Pollmann R, Schmidt T, Eming R, Hertl M: Pemphigus: a comprehensive review on pathogenesis, clinical presentation and novel therapeutic approaches. Clin Rev Allergy Immunol 2018; 54: 1–25 CrossRef MEDLINE
e2.
Amber KT, Murrell DF, Schmidt E, Joly P, Borradori L: Autoimmune subepidermal bullous diseases of the skin and mucosae: clinical features, diagnosis, and management. Clin Rev Allergy Immunol 2018; 54: 26–51 CrossRef MEDLINE
e3.
Kridin K: Pemphigus group: overview, epidemiology, mortality, and comorbidities. Immunol Res 2018; 66: 255–70 CrossRef MEDLINE
e4.
Kridin K, Ludwig RJ: The growing incidence of bullous pemphigoid: overview and potential explanations. Front Med (Lausanne) 2018; 5: 220 CrossRef MEDLINE PubMed Central
e5.
Bertram F, Brocker EB, Zillikens D, Schmidt E: Prospective analysis of the incidence of autoimmune bullous disorders in Lower Franconia, Germany. J Dtsch Dermatol Ges 2009; 7: 434–40 CrossRef MEDLINE
e6.
Marazza G, Pham HC, Scharer L, et al.: Incidence of bullous pemphigoid and pemphigus in Switzerland: a 2-year prospective study. Br J Dermatol 2009; 161: 861–8 CrossRef MEDLINE
e7.
Joly P, Baricault S, Sparsa A, et al.: Incidence and mortality of bullous pemphigoid in France. J Invest Dermatol 2012; 132: 1998–2004 CrossRef MEDLINE
e8.
Forsti AK, Jokelainen J, Timonen M, Tasanen K: Increasing incidence of bullous pemphigoid in Northern Finland: a retrospective database study in Oulu University Hospital. Br J Dermatol 2014; 171: 1223–6 CrossRef MEDLINE
e9.
Hubner F, Recke A, Zillikens D, Linder R, Schmidt E: Prevalence and age distribution of pemphigus and pemphigoid diseases in Germany. J Invest Dermatol 2016; 136: 2495–8 CrossRef MEDLINE
e10.
Jelti L, Cordel N, Gillibert A, et al.: Incidence and mortality of pemphigus in France. J Invest Dermatol 2019; 139: 469–73 CrossRef MEDLINE
e11.
Joly P: Incidence of bullous pemphigoid and pemphigus vulgaris. BMJ 2008; 337: a209 CrossRef MEDLINE PubMed Central
e12.
Loget J, Barbe C, Duvert-Lehembre S, et al.: The regibul register: a tool for monitoring the distribution and incidence of autoimmune bullous dermatoses in three french regions, 2010 to 2015. Acta Derm Venereol 2018; 98: 380–1 CrossRef MEDLINE
e13.
Persson MSM, Harman KE, Vinogradova Y, et al.: Incidence, prevalence and mortality of bullous pemphigoid in England 1998–2017: a population-based cohort study. Br J Dermatol 2021; 184: 68–77 CrossRef MEDLINE
e14.
van Beek N, Schmidt E: Autoimmune bullous diseases. In: Höger P, Kinsler V, Yan A (Eds) Harper’s Textbook of Pediatric Dermatology, chapter 73, 4th edition Wiley-Blackwell, Chichester 2020: 868–97 CrossRef
e15.
Sarig O, Bercovici S, Zoller L, et al.: Population-specific association between a polymorphic variant in ST18, encoding a pro-apoptotic molecule, and pemphigus vulgaris. J Invest Dermatol 2012; 132: 1798–805 CrossRef MEDLINE
e16.
Hirose M, Schilf P, Benoit S, et al.: Polymorphisms in the mitochondrially encoded ATP synthase 8 gene are associated with susceptibility to bullous pemphigoid in the German population. Exp Dermatol 2015; 24: 715–7 CrossRef MEDLINE
e17.
Zimmermann J, Bahmer F, Rose C, Zillikens D, Schmidt E: Clinical and immunopathological spectrum of paraneoplastic pemphigus. J Dtsch Dermatol Ges 2010; 8: 598–606 CrossRef MEDLINE
e18.
Yong AA, Tey HL: Paraneoplastic pemphigus. Australas J Dermatol 2013; 54: 241–50 CrossRef MEDLINE
e19.
Leger S, Picard D, Ingen-Housz-Oro S, et al.: Prognostic factors of paraneoplastic pemphigus. Arch Dermatol 2012; 148: 1165–72 CrossRef MEDLINE
e20.
Hashimoto T, Kiyokawa C, Mori O, et al.: Human desmocollin 1 (Dsc1) is an autoantigen for the subcorneal pustular dermatosis type of IgA pemphigus. J Invest Dermatol 1997; 109: 127–31 CrossRef MEDLINE
e21.
Muller R, Heber B, Hashimoto T, et al.: Autoantibodies against desmocollins in European patients with pemphigus. Clin Exp Dermatol 2009; 34: 898–903 CrossRef MEDLINE
e22.
Hashimoto T, Teye K, Ishii N: Clinical and immunological studies of 49 cases of various types of intercellular IgA dermatosis and 13 cases of classical subcorneal pustular dermatosis examined at Kurume University. Br J Dermatol 2017; 176: 168–75 CrossRef MEDLINE
e23.
Kasperkiewicz M, Kowalewski C, Jablonska S: Pemphigus herpetiformis: from first description until now. J Am Acad Dermatol 2014; 70: 780–7 CrossRef MEDLINE
e24.
della Torre R, Combescure C, Cortes B, et al.: Clinical presentation and diagnostic delay in bullous pemphigoid: a prospective nationwide cohort. Br J Dermatol 2012; 167: 1111–7 CrossRef MEDLINE
e25.
Lamberts A, Meijer JM, Jonkman MF: Nonbullous pemphigoid: a systematic review. J Am Acad Dermatol 2018; 78: 989–95 e2 CrossRef MEDLINE
e26.
Kridin K, Bergman R: Assessment of the prevalence of mucosal involvement in bullous pemphigoid. JAMA Dermatol 2019; 155: 166–71 CrossRef MEDLINE PubMed Central
e27.
Forsti AK, Huilaja L, Schmidt E, Tasanen K: Neurological and psychiatric associations in bullous pemphigoid-more than skin deep? Exp Dermatol 2017; 26: 1228–34 CrossRef MEDLINE
e28.
Bech R, Kibsgaard L, Vestergaard C: Comorbidities and treatment strategies in bullous pemphigoid: an appraisal of the existing litterature. Front Med (Lausanne) 2018; 5: 238 CrossRef MEDLINE PubMed Central
e29.
Bastuji-Garin S, Joly P, Lemordant P, et al.: Risk factors for bullous pemphigoid in the elderly: a prospective case-control study. J Invest Dermatol 2011; 131: 637–43 CrossRef MEDLINE
e30.
Lloyd-Lavery A, Chi CC, Wojnarowska F, Taghipour K: The associations between bullous pemphigoid and drug use: a UK case-control study. JAMA Dermatol 2013; 149: 58–62 CrossRef MEDLINE
e31.
Varpuluoma O, Forsti AK, Jokelainen J, et al.: Vildagliptin significantly increases the risk of bullous pemphigoid: a finnish nationwide registry study. J Invest Dermatol 2018; 138: 1659–61 CrossRef CrossRef MEDLINE
e32.
Plaquevent M, Tetart F, Fardet L, et al.: Higher frequency of dipeptidyl peptidase-4 inhibitor intake in bullous pemphigoid patients than in the french general population. J Invest Dermatol 2019; 139: 835–41 CrossRef MEDLINE
e33.
Liu SD, Chen WT, Chi CC: Association between medication use and bullous pemphigoid: a systematic review and meta-analysis. JAMA Dermatol 2020; 156: 891–900 CrossRef MEDLINE
e34.
Holtsche MM, Goletz S, van Beek N, et al.: Prospective study in bullous pemphigoid: association of high serum anti-BP180 IgG levels with increased mortality and reduced Karnofsky score. Br J Dermatol 2018; 179: 918–24 CrossRef CrossRef MEDLINE
e35.
Kridin K, Shihade W, Bergman R: Mortality in patients with bullous pemphigoid: a retrospective cohort study, systematic review and meta-analysis. Acta Derm Venereol 2019; 99: 72–7 CrossRef MEDLINE
e36.
Egan CA, Lazarova Z, Darling TN, Yee C, Cote T, Yancey KB: Anti-epiligrin cicatricial pemphigoid and relative risk for cancer. Lancet 2001; 357: 1850–1 CrossRef
e37.
Huilaja L, Makikallio K, Tasanen K: Gestational pemphigoid. Orphanet J Rare Dis 2014; 9: 136 CrossRef MEDLINE PubMed Central
e38.
Lammer J, Hein R, Roenneberg S, Biedermann T, Volz T: Drug-induced linear IgA bullous dermatosis: a case report and review of the literature. Acta Derm Venereol 2019; 99: 508–15 CrossRef MEDLINE
e39.
Goletz S, Hashimoto T, Zillikens D, Schmidt E: Anti-p200 pemphigoid. J Am Acad Dermatol 2014; 71: 185–91 CrossRef MEDLINE
e40.
Ludwig RJ: Clinical presentation, pathogenesis, diagnosis, and treatment of epidermolysis bullosa acquisita. ISRN dermatology 2013; 2013: 812029 CrossRef MEDLINE PubMed Central
e41.
Meijer JM, Atefi I, Diercks GFH, et al.: Serration pattern analysis for differentiating epidermolysis bullosa acquisita from other pemphigoid diseases. J Am Acad Dermatol 2018; 78: 754–59.e6 CrossRef MEDLINE
e42.
Buijsrogge JJ, Diercks GF, Pas HH, Jonkman MF: The many faces of epidermolysis bullosa acquisita after serration pattern analysis by direct immunofluorescence microscopy. Br J Dermatol 2011; 165: 92–8 CrossRef MEDLINE
e43.
Holtsche MM, Zillikens D, Schmidt E: [Mucous membrane pemphigoid]. Hautarzt 2018; 69: 67–83 CrossRef MEDLINE
e44.
Kaplan I, Hodak E, Ackerman L, Mimouni D, Anhalt GJ, Calderon S: Neoplasms associated with paraneoplastic pemphigus: a review with emphasis on non-hematologic malignancy and oral mucosal manifestations. Oral Oncol 2004; 40: 553–62 CrossRef MEDLINE
e45.
Sardy M, Kostaki D, Varga R, Peris K, Ruzicka T: Comparative study of direct and indirect immunofluorescence and of bullous pemphigoid 180 and 230 enzyme-linked immunosorbent assays for diagnosis of bullous pemphigoid. J Am Acad Dermatol 2013; 69: 748–53 CrossRef MEDLINE
e46.
Blocker IM, Dahnrich C, Probst C, et al.: Epitope mapping of BP230 leading to a novel enzyme-linked immunosorbent assay for autoantibodies in bullous pemphigoid. Br J Dermatol 2012; 166: 964–70 CrossRef MEDLINE
e47.
Schmidt E, Dahnrich C, Rosemann A, et al.: Novel ELISA systems for antibodies to desmoglein 1 and 3: correlation of disease activity with serum autoantibody levels in individual pemphigus patients. Exp Dermatol 2010; 19: 458–63 CrossRef MEDLINE
e48.
Kobayashi M, Amagai M, Kuroda-Kinoshita K, et al.: BP180 ELISA using bacterial recombinant NC16a protein as a diagnostic and monitoring tool for bullous pemphigoid. J Dermatol Sci 2002; 30: 224–32 CrossRef
e49.
Saleh MA, Ishii K, Kim YJ, et al.: Development of NC1 and NC2 domains of type VII collagen ELISA for the diagnosis and analysis of the time course of epidermolysis bullosa acquisita patients. J Dermatol Sci 2011; 62: 169–75 CrossRef MEDLINE
e50.
Sitaru C, Dahnrich C, Probst C, et al.: Enzyme-linked immunosorbent assay using multimers of the 16th non-collagenous domain of the BP180 antigen for sensitive and specific detection of pemphigoid autoantibodies. Exp Dermatol 2007; 16: 770–7 CrossRef MEDLINE
e51.
van Beek N, Dahnrich C, Johannsen N, et al.: Prospective studies on the routine use of a novel multivariant enzyme-linked immunosorbent assay for the diagnosis of autoimmune bullous diseases. J Am Acad Dermatol 2017; 76: 889–94. e5.
e52.
Ishii K, Amagai M, Hall RP, et al.: Characterization of autoantibodies in pemphigus using antigen-specific enzyme-linked immunosorbent assays with baculovirus-expressed recombinant desmogleins. J Immunol 1997; 159: 2010–7.
e53.
Charneux J, Lorin J, Vitry F, et al.: Usefulness of BP230 and BP180-NC16a enzyme-linked immunosorbent assays in the initial diagnosis of bullous pemphigoid: a retrospective study of 138 patients. Arch Dermatol 2011; 147: 286–91 CrossRef MEDLINE
e54.
Sadik CD, Pas HH, Bohlmann MK, et al.: Value of BIOCHIP technology in the serological diagnosis of pemphigoid gestationis. Acta Derm Venereol 2017; 97: 128–30 CrossRef MEDLINE
e55.
Murakami H, Nishioka S, Setterfield J, et al.: Analysis of antigens targeted by circulating IgG and IgA autoantibodies in 50 patients with cicatricial pemphigoid. J Dermatol Sci 1998; 17: 39–44 CrossRef
e56.
Calabresi V, Carrozzo M, Cozzani E, et al.: Oral pemphigoid autoantibodies preferentially target BP180 ectodomain. Clin Immunol 2007; 122: 207–13 CrossRef MEDLINE
e57.
Schmidt E, Skrobek C, Kromminga A, et al.: Cicatricial pemphigoid: IgA and IgG autoantibodies target epitopes on both intra- and extracellular domains of bullous pemphigoid antigen 180. Br J Dermatol 2001; 145: 778–83 CrossRef MEDLINE
e58.
Schmidt E, Obe K, Brocker EB, Zillikens D: Serum levels of autoantibodies to BP180 correlate with disease activity in patients with bullous pemphigoid. Arch Dermatol 2000; 136: 174–8 CrossRef MEDLINE
e59.
Kim JH, Kim YH, Kim S, et al.: Serum levels of anti-type VII collagen antibodies detected by enzyme-linked immunosorbent assay in patients with epidermolysis bullosa acquisita are correlated with the severity of skin lesions. J Eur Acad Dermatol Venereol 2012; 27: e224–30 CrossRef MEDLINE
e60.
Horvath ON, Varga R, Kaneda M, Schmidt E, Ruzicka T, Sardy M: Diagnostic performance of the „MESACUP anti-Skin profile TEST“. Eur J Dermatol 2016; 26: 56–63 CrossRef MEDLINE
e61.
van Beek N, Rentzsch K, Probst C, et al.: Serological diagnosis of autoimmune bullous skin diseases: prospective comparison of the BIOCHIP mosaic-based indirect immunofluorescence technique with the conventional multi-step single test strategy. Orphanet J Rare Dis 2012; 7: 49 CrossRef MEDLINE PubMed Central
e62.
Yang A, Xuan R, Melbourne W, Tran K, Murrell DF: Validation of the BIOCHIP test for the diagnosis of bullous pemphigoid, pemphigus vulgaris and pemphigus foliaceus. J Eur Acad Dermatol Venereol 2020; 34: 153–60 CrossRef MEDLINE
e63.
Komorowski L, Muller R, Vorobyev A, et al.: Sensitive and specific assays for routine serological diagnosis of epidermolysis bullosa acquisita. J Am Acad Dermatol 2012; 68: e89–95 CrossRef MEDLINE
e64.
Waschke J, Spindler V: Desmosomes and extradesmosomal adhesive signaling contacts in pemphigus. Med Res Rev 2014; 34: 1127–45 CrossRef MEDLINE
e65.
Hammers CM, Stanley JR: Mechanisms of disease: pemphigus and bullous pemphigoid. Annu Rev Pathol 2016; 11: 175–97 CrossRef MEDLINE PubMed Central
e66.
Sadik CD, Schmidt E, Zillikens D, Hashimoto T: Recent progresses and perspectives in autoimmune bullous diseases. J Allergy Clin Immunol 2020; 145: 1145–7 CrossRef MEDLINE
e67.
Sadik CD, Zillikens D: Current treatments and developments in pemphigoid diseases as paradigm diseases for autoantibody-driven, organ-specific autoimmune diseases. Semin Hematol 2016; 53 (Suppl 1): S51–3 CrossRef MEDLINE
e68.
Anhalt GJ, Labib RS, Voorhees JJ, Beals TF, Diaz LA: Induction of pemphigus in neonatal mice by passive transfer of IgG from patients with the disease. N Engl J Med 1982; 306: 1189–96 CrossRef MEDLINE
e69.
Amagai M, Tsunoda K, Suzuki H, Nishifuji K, Koyasu S, Nishikawa T: Use of autoantigen-knockout mice in developing an active autoimmune disease model for pemphigus. J Clin Invest 2000; 105: 625–31 CrossRef MEDLINE PubMed Central
e70.
Eming R, Hennerici T, Backlund J, et al.: Pathogenic IgG antibodies against desmoglein 3 in pemphigus vulgaris are regulated by HLA-DRB1*04:02-restricted T cells. J Immunol 2014; 193: 4391–9 CrossRef MEDLINE
e71.
Liu Z, Diaz LA, Troy JL, et al.: A passive transfer model of the organ-specific autoimmune disease, bullous pemphigoid, using antibodies generated against the hemidesmosomal antigen, BP180. J Clin Invest 1993; 92: 2480–8 CrossRef MEDLINE PubMed Central
e72.
Nishie W, Sawamura D, Goto M, et al.: Humanization of autoantigen. Nat Med 2007; 13: 378–83 CrossRef MEDLINE
e73.
Sitaru C, Mihai S, Otto C, et al.: Induction of dermal-epidermal separation in mice by passive transfer of antibodies specific to type VII collagen. J Clin Invest 2005; 115: 870–8 CrossRef MEDLINE PubMed Central
e74.
Haeberle S, Wei X, Bieber K, et al.: Regulatory T-cell deficiency leads to pathogenic bullous pemphigoid antigen 230 autoantibody and autoimmune bullous disease. J Allergy Clin Immunol 2018; 142: 1831–42. e7 CrossRef MEDLINE
e75.
Heppe EN, Tofern S, Schulze FS, et al.: Experimental laminin 332 mucous membrane pemphigoid critically involves C5aR1 and reflects clinical and immunopathological characteristics of the human disease. J Invest Dermatol 2017; 137: 1709–18 CrossRef MEDLINE
e76.
Sadik CD, Schmidt E: Resolution in bullous pemphigoid. Semin Immunopathol 2019; 41: 645–54 CrossRef MEDLINE PubMed Central
e77.
Karsten CM, Pandey MK, Figge J, et al.: Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcgammaRIIB and dectin-1. Nat Med 2012; 18: 1401–6 CrossRef MEDLINE PubMed Central
e78.
Koga H, Kasprick A, Lopez R, et al.: Therapeutic effect of a novel phosphatidylinositol-3-kinase delta inhibitor in experimental epidermolysis bullosa acquisita. Front Immunol 2018; 9: 1558 CrossRef MEDLINE PubMed Central
e79.
Samavedam UK, Mitschker N, Kasprick A, et al.: Whole-genome expression profiling in skin reveals SYK as a key regulator of inflammation in experimental epidermolysis bullosa acquisita. Front Immunol 2018; 9: 249 CrossRef MEDLINE PubMed Central
e80.
Stussel P, Dieckhoff KS, Kunzel S, et al.: Propranolol is an effective topical and systemic treatment option for experimental epidermolysis bullosa acquisita. J Invest Dermatol 2020; 140: 2408–20 CrossRef MEDLINE
e81.
Gunther C, Wozel G, Meurer M, Pfeiffer C: Up-regulation of CCL11 and CCL26 is associated with activated eosinophils in bullous pemphigoid. Clin Exp Immunol 2011; 166: 145–53 CrossRef MEDLINE PubMed Central
e82.
Shrikhande M, Hunziker T, Braathen LR, Pichler WJ, Dahinden CA, Yawalkar N: Increased coexpression of eotaxin and interleukin 5 in bullous pemphigoid. Acta Derm Venereol 2000; 80: 277–80 CrossRef MEDLINE
e83.
Wakugawa M, Nakamura K, Hino H, et al.: Elevated levels of eotaxin and interleukin-5 in blister fluid of bullous pemphigoid: correlation with tissue eosinophilia. Br J Dermatol 2000; 143: 112–6 CrossRef MEDLINE
e84.
Schmidt E, Lambert A, Marzano A, et al.: S3 guideline on the diagnosis and management of mucous membrane pemphigoid initiated by the European Academy of Dermatology and Venereology (EADV). J Eur Acad Dermatol Venereol (in preparation).
e85.
Lee A, Sandhu S, Imlay-Gillespie L, Mulligan S, Shumack S: Successful use of Bruton‘s kinase inhibitor, ibrutinib, to control paraneoplastic pemphigus in a patient with paraneoplastic autoimmune multiorgan syndrome and chronic lymphocytic leukaemia. Australas J Dermatol 2017; 58: e240-e2 CrossRef MEDLINE
e86.
Hofrichter M, Dworschak J, Emtenani S, et al.: Immunoadsorption o f desmoglein-3-specific IgG abolishes the blister-inducing capacity of pemphigus vulgaris IgG in neonatal mice. Front Immunol 2018; 9: 1935 CrossRef MEDLINE PubMed Central
e87.
Hubner F, Kasperkiewicz M, Knuth-Rehr D, et al.: Adjuvant treatment of severe/refractory bullous pemphigoid with protein A immunoadsorption. J Dtsch Dermatol Ges 2018; 16: 1109–18 CrossRef
e88.
Bastuji-Garin S, Souissi R, Blum L, et al.: Comparative epidemiology of pemphigus in Tunisia and France: unusual incidence of pemphigus foliaceus in young Tunisian women. J Invest Dermatol 1995; 104: 302–5 CrossRef MEDLINE
e89.
Stanley J: Pemphigus. In: Wolff K GL, Katz SI, et al. (ed.): Fitzpatrick’s dermatology in general medicine. New York: McGraw-Hill 2008; p. p. 459–68.
e90.
Bernard P, Vaillant L, Labeille B, et al.: Incidence and distribution of subepidermal autoimmune bullous skin diseases in three French regions. Bullous Diseases French Study Group. Arch Dermatol 1995; 131: 48–52 CrossRef CrossRef MEDLINE
e91.
Radford CF, Rauz S, Williams GP, Saw VP, Dart JK: Incidence, presenting features, and diagnosis of cicatrising conjunctivitis in the United Kingdom. Eye (Lond) 2012; 26: 1199–208 CrossRef MEDLINE PubMed Central
e92.
Milinkovic MV, Jankovic S, Medenica L, et al.: Incidence of autoimmune bullous diseases in Serbia: a 20-year retrospective study. J Dtsch Dermatol Ges 2016; 14: 995–1005 CrossRef
e93.
van Beek N, Knuth-Rehr D, Altmeyer P, et al.: Diagnostics of autoimmune bullous diseases in German dermatology departments. J Dtsch Dermatol Ges 2012; 10: 492–9 CrossRef MEDLINE
e94.
Tsuruta D, Ishii N, Hamada T, et al.: IgA pemphigus. Clin Dermatol 2011; 29: 437–42 CrossRef MEDLINE
e95.
Kridin K, Patel PM, Jones VA, Cordova A, Amber KT: IgA pemphigus: a systematic review. J Am Acad Dermatol 2020; 82: 1386–92 CrossRef MEDLINE
e96.
Wojnarowska F, Kirtschig G, Khumalo N: Treatment of subepidermal immunobullous diseases. Clin Dermatol 2001; 19: 768–77 CrossRef
e97.
Kasperkiewicz M, Meier M, Zillikens D, Schmidt E: Linear IgA disease: successful application of immunoadsorption and review of the literature. Dermatology 2010; 220: 259–63 CrossRef MEDLINE
e98.
Iwata H, Vorobyev A, Koga H, et al.: Meta-analysis of the clinical and immunopathological characteristics and treatment outcomes in epidermolysis bullosa acquisita patients. Orphanet J Rare Dis 2018; 13: 153 CrossRef MEDLINE PubMed Central
e99.
Santi CG, Gripp AC, Roselino AM, et al.: Consensus on the treatment of autoimmune bullous dermatoses: bullous pemphigoid, mucous membrane pemphigoid and epidermolysis bullosa acquisita— Brazilian Society of Dermatology. An Bras Dermatol 2019; 94: 33–47 CrossRef MEDLINE PubMed Central
e100.
Hahn-Ristic K, Rzany B, Amagai M, Bröcker E-B, Zillikens D: Increased incidence of pemphigus vulgaris in southern Europeans living in Germany compared with native Germans. Eur Acad Dermatol Venereol 2002; 16:68–71 CrossRef MEDLINE
Department of Dermatology, Venereology, and Allergology, University of Lübeck, Lübeck, Germany: Dr. med. Nina van Beek, Prof. Dr. med. Detlef Zillikens, Prof. Dr. med. Dr. rer. nat. Enno Schmidt
Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany: Prof. Dr. med. Dr. rer. nat. Enno Schmidt
Dermatology departments in Germany that carry out more than 500 non-commercial test systems/year
Box
Dermatology departments in Germany that carry out more than 500 non-commercial test systems/year
Schematic diagram of the autoantigens in pemphigus and pemphigoid diseases
Figure 1
Schematic diagram of the autoantigens in pemphigus and pemphigoid diseases
Clinical presentation of selected cases of autoimmune bullous dermatoses
Figure 2
Clinical presentation of selected cases of autoimmune bullous dermatoses
Direct immunofluorescence of perilesional biopsies for the detection of tissue-bound autoantibodies (a–c) and indirect immunofluorescence of the desmoglein 3–specific biochip (d).
Figure 3
Direct immunofluorescence of perilesional biopsies for the detection of tissue-bound autoantibodies (a–c) and indirect immunofluorescence of the desmoglein 3–specific biochip (d).
Indirect immunofluorescence on monkey esophagus, salt-split skin, and selected biochips
Figure 4
Indirect immunofluorescence on monkey esophagus, salt-split skin, and selected biochips
Incidence and Prevalence
Table 1
Incidence and Prevalence
Target antigens of autoimmune bullous dermatoses and serological diagnostics
Table 2
Target antigens of autoimmune bullous dermatoses and serological diagnostics
Treatment options for pemphigoid diseases and dermatitis herpetiformis
eTable 1
Treatment options for pemphigoid diseases and dermatitis herpetiformis
Treatment options for pemphigus diseases
eTable 2
Treatment options for pemphigus diseases
1.Schmidt E, Zillikens D: Pemphigoid diseases. Lancet 2013; 381: 320–32 CrossRef MEDLINE
2.Schmidt E, Kasperkiewicz M, Joly P: Pemphigus. Lancet 2019; 394: 882–94 CrossRef MEDLINE
3.Kasperkiewicz M, Ellebrecht CT, Takahashi H, et al.: Pemphigus. Nat Rev Dis Primers 2017; 3: 17026 CrossRef MEDLINE PubMed Central
4.Sardy M, Karpati S, Merkl B, Paulsson M, Smyth N: Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis. J Exp Med 2002; 195: 747–57 CrossRef MEDLINE PubMed Central
5.Langan SM, Smeeth L, Hubbard R, Fleming KM, Smith CJ, West J: Bullous pemphigoid and pemphigus vulgaris—incidence and mortality in the UK: population based cohort study. Bmj 2008; 337: a180 CrossRef MEDLINE PubMed Central
6.Hubner F, Konig IR, Holtsche MM, Zillikens D, Linder R, Schmidt E: Prevalence and age distribution of pemphigus and pemphigoid diseases among pediatric patients in Germany. J Eur Acad Dermatol Venereol 2020; 34: 2600–5 CrossRef MEDLINE
7.Anhalt GJ: Paraneoplastic pemphigus. J Investig Dermatol Symp Proc 2004; 9: 29–33 CrossRef MEDLINE
8.Murrell DF, Daniel BS, Joly P, et al.: Definitions and outcome measures for bullous pemphigoid: recommendations by an international panel of experts. J Am Acad Dermatol 2012; 66: 479–85 CrossRef MEDLINE PubMed Central
9.Feliciani C, Joly P, Jonkman MF, et al.: Management of bullous pemphigoid: the European Dermatology Forum consensus in collaboration with the European Academy of Dermatology and Venereology. Br J Dermatol 2015; 172: 867–77 CrossRef MEDLINE
10.Schmidt E, Goebeler M, Hertl M, et al.: S2k guideline for the diagnosis of pemphigus vulgaris/foliaceus and bullous pemphigoid. J Dtsch Dermatol Ges 2015; 13: 713–27 CrossRef CrossRef MEDLINE
11.Kibsgaard L, Rasmussen M, Lamberg A, Deleuran M, Olesen AB, Vestergaard C: Increased frequency of multiple sclerosis among patients with bullous pemphigoid: a population-based cohort study on comorbidities anchored around the diagnosis of bullous pemphigoid. Br J Dermatol 2017; 176: 1486–91 CrossRef MEDLINE
12.Schulze F, Neumann K, Recke A, Zillikens D, Linder R, Schmidt E: Malignancies in pemphigus and pemphigoid diseases. J Invest Dermatol 2015; 135: 1445–7 CrossRef MEDLINE
13.Kridin K, Cohen AD: Dipeptidyl-peptidase IV inhibitor-associated bullous pemphigoid: a systematic review and meta-analysis. J Am Acad Dermatol 2018; S0190–9622(18)32660–4 CrossRef
14.Murrell DF, Marinovic B, Caux F, et al.: Definitions and outcome measures for mucous membrane pemphigoid: recommendations of an international panel of experts. J Am Acad Dermatol 2015; 72: 168–74 CrossRef MEDLINE
15.Goletz S, Probst C, Komorowski L, et al.: A sensitive and specific assay for the serological diagnosis of antilaminin 332 mucous membrane pemphigoid. Br J Dermatol 2019; 180: 149–56 CrossRef MEDLINE
16.Vorobyev A, Ludwig RJ, Schmidt E: Clinical features and diagnosis of epidermolysis bullosa acquisita. Expert Rev Clin Immunol 2017; 13: 157–69 CrossRef MEDLINE
17.Prost-Squarcioni C, Caux F, Schmidt E, et al.: International Bullous Diseases Group: consensus on diagnostic criteria for epidermolysis bullosa acquisita. Br J Dermatol 2018; 179: 30–41 CrossRef MEDLINE
18.Görög A, Antiga E, Caproni M, et al.: S2k guideline (consensus statement) for diagnosis and therapy of dermatitis herpetiformis initiated by the European Academy of Dermatology and Venereology (EADV). J Eur Acad Dermatol Venereol 2021; 35:1251–77 CrossRef MEDLINE
19.van Beek N, Zillikens D, Schmidt E: Diagnostik blasenbildender Autoimmundermatosen. J Dtsch Dermatol Ges 2018; 16: 1077–92 CrossRef
20.Harman KE, Brown D, Exton LS, et al.: British Association of Dermatologists‘ guidelines for the management of pemphigus vulgaris 2017. Br J Dermatol 2017; 177: 1170–201 CrossRef MEDLINE
21.Hertl M, Jedlickova H, Karpati S, et al.: Pemphigus. S2 Guideline for diagnosis and treatment—guided by the European Dermatology Forum (EDF) in cooperation with the European Academy of Dermatology and Venereology (EADV). J Eur Acad Dermatol Venereol 2015; 29: 405–14 CrossRef MEDLINE
22.Terra JB, Meijer JM, Jonkman MF, Diercks GF: The n- vs. u-serration is a learnable criterion to differentiate pemphigoid from epidermolysis bullosa acquisita in direct immunofluorescence serration pattern analysis. Br J Dermatol 2013; 169: 100–5 CrossRef MEDLINE
23.van Beek N, Kruger S, Fuhrmann T, et al.: Multicenter prospective —study on multivariant diagnostics of autoimmune bullous dermatoses using the BIOCHIP(TM) technology. J Am Acad Dermatol 2020; 83: 1315–22 CrossRef MEDLINE
24.Schmidt E, Sticherling M, Sardy M, et al.: S2k guidelines for the treatment of pemphigus vulgaris/foliaceus and bullous pemphigoid: 2019 update. J Dtsch Dermatol Ges 2020; 18: 516–26 CrossRef MEDLINE
25.Spindler V, Eming R, Schmidt E, et al.: Mechanisms causing loss of keratinocyte cohesion in pemphigus. J Invest Dermatol 2018; 138: 32–7 CrossRef MEDLINE
26.Chakievska L, Holtsche MM, Kunstner A, et al.: IL-17A is functionally relevant and a potential therapeutic target in bullous pemphigoid. J Autoimmun 2019; 96: 104–12 CrossRef MEDLINE
27.Kasprick A, Hofrichter M, Smith B, et al.: Treatment with anti-neonatal Fc receptor (FcRn) antibody ameliorates experimental epidermolysis bullosa acquisita in mice. Br J Pharmacol 2020; 177: 2381–92 CrossRef MEDLINE PubMed Central
28.Izumi K, Bieber K, Ludwig RJ: Current clinical trials in pemphigus and pemphigoid. Front Immunol 2019; 10: 978 CrossRef MEDLINE PubMed Central
29.Maglie R, Hertl M: Pharmacological advances in pemphigoid. Curr Opin Pharmacol 2019; 46: 34–43 CrossRef MEDLINE
30.Rashid H, Lambert A, Alberti-Violetti S, et al.: S3 guideline on the diagnosis and management of mucous membrane pemphigoid initiated by the European Academy of Dermatology and Venereology (EADV) – part I: Clinical presentation and outcome measurements for disease assessment. J Eur Acad Dermatol Venereol (in print).
31.Joly P, Horwath B, Patsatsi A, et al.: Updated S2K guidelines on the management of pemphigus vulgaris and foliaceus initiated by the european academy of dermatology and venereology (EADV). J Eur Acad Dermatol Venereol 2020; 34: 1900–13 CrossRef MEDLINE
32.Joly P, Maho-Vaillant M, Prost-Squarcioni C, et al.: First-line rituximab combined with short-term prednisone versus prednisone alone for the treatment of pemphigus (Ritux 3): a prospective, multicentre, parallel-group, open-label randomised trial. Lancet 2017; 389: 2031–40 CrossRef
33.Ellebrecht CT, Bhoj VG, Nace A, et al.: Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 2016; 353: 179–84 CrossRef MEDLINE PubMed Central
34.Joly P, Roujeau JC, Benichou J, et al.: A comparison of oral and topical corticosteroids in patients with bullous pemphigoid. N Engl J Med 2002; 346: 321–7 CrossRef MEDLINE
35.Sticherling M, Franke A, Aberer E, et al.: An open, multicentre, randomized clinical study in patients with bullous pemphigoid comparing methylprednisolone and azathioprine with methylprednisolone and dapsone. Br J Dermatol 2017; 177: 1299–305 CrossRef MEDLINE
36.Williams HC, Wojnarowska F, Kirtschig G, et al.: Doxycycline versus prednisolone as an initial treatment strategy for bullous pemphigoid: a pragmatic, non-inferiority, randomised controlled trial. Lancet 2017; 389: 1630–8 CrossRef
37.Enk A, Hadaschik E, Eming R, et al.: European Guidelines (S1) on the use of high-dose intravenous immunoglobulin in dermatology. J Dtsch Dermatol Ges 2017; 15: 228–41 CrossRef MEDLINE
38.Kremer N, Snast I, Cohen ES, et al.: Rituximab and omalizumab for the treatment of bullous pemphigoid: a systematic review of the literature. Am J Clin Dermatol 2019; 20: 209–16 CrossRef MEDLINE
39.Ujiie H, Iwata H, Yamagami J, et al.: Japanese guidelines for the management of pemphigoid (including epidermolysis bullosa acquisita). J Dermatol 2019; 46: 1102–35 CrossRef MEDLINE
40.van Beek N, Weidinger A, Schneider SW, et al.: Incidence of pemphigoid diseases in Northern Germany in 2016—first data from the Schleswig-Holstein Registry of autoimmune bullous diseases. J Eur Acad Dermatol Venereol 2021; 35: 1197–202 CrossRef MEDLINE
e1.Pollmann R, Schmidt T, Eming R, Hertl M: Pemphigus: a comprehensive review on pathogenesis, clinical presentation and novel therapeutic approaches. Clin Rev Allergy Immunol 2018; 54: 1–25 CrossRef MEDLINE
e2.Amber KT, Murrell DF, Schmidt E, Joly P, Borradori L: Autoimmune subepidermal bullous diseases of the skin and mucosae: clinical features, diagnosis, and management. Clin Rev Allergy Immunol 2018; 54: 26–51 CrossRef MEDLINE
e3.Kridin K: Pemphigus group: overview, epidemiology, mortality, and comorbidities. Immunol Res 2018; 66: 255–70 CrossRef MEDLINE
e4.Kridin K, Ludwig RJ: The growing incidence of bullous pemphigoid: overview and potential explanations. Front Med (Lausanne) 2018; 5: 220 CrossRef MEDLINE PubMed Central
e5.Bertram F, Brocker EB, Zillikens D, Schmidt E: Prospective analysis of the incidence of autoimmune bullous disorders in Lower Franconia, Germany. J Dtsch Dermatol Ges 2009; 7: 434–40 CrossRef MEDLINE
e6.Marazza G, Pham HC, Scharer L, et al.: Incidence of bullous pemphigoid and pemphigus in Switzerland: a 2-year prospective study. Br J Dermatol 2009; 161: 861–8 CrossRef MEDLINE
e7.Joly P, Baricault S, Sparsa A, et al.: Incidence and mortality of bullous pemphigoid in France. J Invest Dermatol 2012; 132: 1998–2004 CrossRef MEDLINE
e8.Forsti AK, Jokelainen J, Timonen M, Tasanen K: Increasing incidence of bullous pemphigoid in Northern Finland: a retrospective database study in Oulu University Hospital. Br J Dermatol 2014; 171: 1223–6 CrossRef MEDLINE
e9.Hubner F, Recke A, Zillikens D, Linder R, Schmidt E: Prevalence and age distribution of pemphigus and pemphigoid diseases in Germany. J Invest Dermatol 2016; 136: 2495–8 CrossRef MEDLINE
e10.Jelti L, Cordel N, Gillibert A, et al.: Incidence and mortality of pemphigus in France. J Invest Dermatol 2019; 139: 469–73 CrossRef MEDLINE
e11.Joly P: Incidence of bullous pemphigoid and pemphigus vulgaris. BMJ 2008; 337: a209 CrossRef MEDLINE PubMed Central
e12.Loget J, Barbe C, Duvert-Lehembre S, et al.: The regibul register: a tool for monitoring the distribution and incidence of autoimmune bullous dermatoses in three french regions, 2010 to 2015. Acta Derm Venereol 2018; 98: 380–1 CrossRef MEDLINE
e13.Persson MSM, Harman KE, Vinogradova Y, et al.: Incidence, prevalence and mortality of bullous pemphigoid in England 1998–2017: a population-based cohort study. Br J Dermatol 2021; 184: 68–77 CrossRef MEDLINE
e14.van Beek N, Schmidt E: Autoimmune bullous diseases. In: Höger P, Kinsler V, Yan A (Eds) Harper’s Textbook of Pediatric Dermatology, chapter 73, 4th edition Wiley-Blackwell, Chichester 2020: 868–97 CrossRef
e15.Sarig O, Bercovici S, Zoller L, et al.: Population-specific association between a polymorphic variant in ST18, encoding a pro-apoptotic molecule, and pemphigus vulgaris. J Invest Dermatol 2012; 132: 1798–805 CrossRef MEDLINE
e16.Hirose M, Schilf P, Benoit S, et al.: Polymorphisms in the mitochondrially encoded ATP synthase 8 gene are associated with susceptibility to bullous pemphigoid in the German population. Exp Dermatol 2015; 24: 715–7 CrossRef MEDLINE
e17.Zimmermann J, Bahmer F, Rose C, Zillikens D, Schmidt E: Clinical and immunopathological spectrum of paraneoplastic pemphigus. J Dtsch Dermatol Ges 2010; 8: 598–606 CrossRef MEDLINE
e18.Yong AA, Tey HL: Paraneoplastic pemphigus. Australas J Dermatol 2013; 54: 241–50 CrossRef MEDLINE
e19.Leger S, Picard D, Ingen-Housz-Oro S, et al.: Prognostic factors of paraneoplastic pemphigus. Arch Dermatol 2012; 148: 1165–72 CrossRef MEDLINE
e20.Hashimoto T, Kiyokawa C, Mori O, et al.: Human desmocollin 1 (Dsc1) is an autoantigen for the subcorneal pustular dermatosis type of IgA pemphigus. J Invest Dermatol 1997; 109: 127–31 CrossRef MEDLINE
e21.Muller R, Heber B, Hashimoto T, et al.: Autoantibodies against desmocollins in European patients with pemphigus. Clin Exp Dermatol 2009; 34: 898–903 CrossRef MEDLINE
e22.Hashimoto T, Teye K, Ishii N: Clinical and immunological studies of 49 cases of various types of intercellular IgA dermatosis and 13 cases of classical subcorneal pustular dermatosis examined at Kurume University. Br J Dermatol 2017; 176: 168–75 CrossRef MEDLINE
e23.Kasperkiewicz M, Kowalewski C, Jablonska S: Pemphigus herpetiformis: from first description until now. J Am Acad Dermatol 2014; 70: 780–7 CrossRef MEDLINE
e24.della Torre R, Combescure C, Cortes B, et al.: Clinical presentation and diagnostic delay in bullous pemphigoid: a prospective nationwide cohort. Br J Dermatol 2012; 167: 1111–7 CrossRef MEDLINE
e25.Lamberts A, Meijer JM, Jonkman MF: Nonbullous pemphigoid: a systematic review. J Am Acad Dermatol 2018; 78: 989–95 e2 CrossRef MEDLINE
e26.Kridin K, Bergman R: Assessment of the prevalence of mucosal involvement in bullous pemphigoid. JAMA Dermatol 2019; 155: 166–71 CrossRef MEDLINE PubMed Central
e27.Forsti AK, Huilaja L, Schmidt E, Tasanen K: Neurological and psychiatric associations in bullous pemphigoid-more than skin deep? Exp Dermatol 2017; 26: 1228–34 CrossRef MEDLINE
e28.Bech R, Kibsgaard L, Vestergaard C: Comorbidities and treatment strategies in bullous pemphigoid: an appraisal of the existing litterature. Front Med (Lausanne) 2018; 5: 238 CrossRef MEDLINE PubMed Central
e29.Bastuji-Garin S, Joly P, Lemordant P, et al.: Risk factors for bullous pemphigoid in the elderly: a prospective case-control study. J Invest Dermatol 2011; 131: 637–43 CrossRef MEDLINE
e30.Lloyd-Lavery A, Chi CC, Wojnarowska F, Taghipour K: The associations between bullous pemphigoid and drug use: a UK case-control study. JAMA Dermatol 2013; 149: 58–62 CrossRef MEDLINE
e31.Varpuluoma O, Forsti AK, Jokelainen J, et al.: Vildagliptin significantly increases the risk of bullous pemphigoid: a finnish nationwide registry study. J Invest Dermatol 2018; 138: 1659–61 CrossRef CrossRef MEDLINE
e32.Plaquevent M, Tetart F, Fardet L, et al.: Higher frequency of dipeptidyl peptidase-4 inhibitor intake in bullous pemphigoid patients than in the french general population. J Invest Dermatol 2019; 139: 835–41 CrossRef MEDLINE
e33.Liu SD, Chen WT, Chi CC: Association between medication use and bullous pemphigoid: a systematic review and meta-analysis. JAMA Dermatol 2020; 156: 891–900 CrossRef MEDLINE
e34.Holtsche MM, Goletz S, van Beek N, et al.: Prospective study in bullous pemphigoid: association of high serum anti-BP180 IgG levels with increased mortality and reduced Karnofsky score. Br J Dermatol 2018; 179: 918–24 CrossRef CrossRef MEDLINE
e35.Kridin K, Shihade W, Bergman R: Mortality in patients with bullous pemphigoid: a retrospective cohort study, systematic review and meta-analysis. Acta Derm Venereol 2019; 99: 72–7 CrossRef MEDLINE
e36.Egan CA, Lazarova Z, Darling TN, Yee C, Cote T, Yancey KB: Anti-epiligrin cicatricial pemphigoid and relative risk for cancer. Lancet 2001; 357: 1850–1 CrossRef
e37.Huilaja L, Makikallio K, Tasanen K: Gestational pemphigoid. Orphanet J Rare Dis 2014; 9: 136 CrossRef MEDLINE PubMed Central
e38.Lammer J, Hein R, Roenneberg S, Biedermann T, Volz T: Drug-induced linear IgA bullous dermatosis: a case report and review of the literature. Acta Derm Venereol 2019; 99: 508–15 CrossRef MEDLINE
e39.Goletz S, Hashimoto T, Zillikens D, Schmidt E: Anti-p200 pemphigoid. J Am Acad Dermatol 2014; 71: 185–91 CrossRef MEDLINE
e40.Ludwig RJ: Clinical presentation, pathogenesis, diagnosis, and treatment of epidermolysis bullosa acquisita. ISRN dermatology 2013; 2013: 812029 CrossRef MEDLINE PubMed Central
e41.Meijer JM, Atefi I, Diercks GFH, et al.: Serration pattern analysis for differentiating epidermolysis bullosa acquisita from other pemphigoid diseases. J Am Acad Dermatol 2018; 78: 754–59.e6 CrossRef MEDLINE
e42.Buijsrogge JJ, Diercks GF, Pas HH, Jonkman MF: The many faces of epidermolysis bullosa acquisita after serration pattern analysis by direct immunofluorescence microscopy. Br J Dermatol 2011; 165: 92–8 CrossRef MEDLINE
e43.Holtsche MM, Zillikens D, Schmidt E: [Mucous membrane pemphigoid]. Hautarzt 2018; 69: 67–83 CrossRef MEDLINE
e44.Kaplan I, Hodak E, Ackerman L, Mimouni D, Anhalt GJ, Calderon S: Neoplasms associated with paraneoplastic pemphigus: a review with emphasis on non-hematologic malignancy and oral mucosal manifestations. Oral Oncol 2004; 40: 553–62 CrossRef MEDLINE
e45.Sardy M, Kostaki D, Varga R, Peris K, Ruzicka T: Comparative study of direct and indirect immunofluorescence and of bullous pemphigoid 180 and 230 enzyme-linked immunosorbent assays for diagnosis of bullous pemphigoid. J Am Acad Dermatol 2013; 69: 748–53 CrossRef MEDLINE
e46.Blocker IM, Dahnrich C, Probst C, et al.: Epitope mapping of BP230 leading to a novel enzyme-linked immunosorbent assay for autoantibodies in bullous pemphigoid. Br J Dermatol 2012; 166: 964–70 CrossRef MEDLINE
e47.Schmidt E, Dahnrich C, Rosemann A, et al.: Novel ELISA systems for antibodies to desmoglein 1 and 3: correlation of disease activity with serum autoantibody levels in individual pemphigus patients. Exp Dermatol 2010; 19: 458–63 CrossRef MEDLINE
e48.Kobayashi M, Amagai M, Kuroda-Kinoshita K, et al.: BP180 ELISA using bacterial recombinant NC16a protein as a diagnostic and monitoring tool for bullous pemphigoid. J Dermatol Sci 2002; 30: 224–32 CrossRef
e49.Saleh MA, Ishii K, Kim YJ, et al.: Development of NC1 and NC2 domains of type VII collagen ELISA for the diagnosis and analysis of the time course of epidermolysis bullosa acquisita patients. J Dermatol Sci 2011; 62: 169–75 CrossRef MEDLINE
e50.Sitaru C, Dahnrich C, Probst C, et al.: Enzyme-linked immunosorbent assay using multimers of the 16th non-collagenous domain of the BP180 antigen for sensitive and specific detection of pemphigoid autoantibodies. Exp Dermatol 2007; 16: 770–7 CrossRef MEDLINE
e51.van Beek N, Dahnrich C, Johannsen N, et al.: Prospective studies on the routine use of a novel multivariant enzyme-linked immunosorbent assay for the diagnosis of autoimmune bullous diseases. J Am Acad Dermatol 2017; 76: 889–94. e5.
e52.Ishii K, Amagai M, Hall RP, et al.: Characterization of autoantibodies in pemphigus using antigen-specific enzyme-linked immunosorbent assays with baculovirus-expressed recombinant desmogleins. J Immunol 1997; 159: 2010–7.
e53.Charneux J, Lorin J, Vitry F, et al.: Usefulness of BP230 and BP180-NC16a enzyme-linked immunosorbent assays in the initial diagnosis of bullous pemphigoid: a retrospective study of 138 patients. Arch Dermatol 2011; 147: 286–91 CrossRef MEDLINE
e54.Sadik CD, Pas HH, Bohlmann MK, et al.: Value of BIOCHIP technology in the serological diagnosis of pemphigoid gestationis. Acta Derm Venereol 2017; 97: 128–30 CrossRef MEDLINE
e55.Murakami H, Nishioka S, Setterfield J, et al.: Analysis of antigens targeted by circulating IgG and IgA autoantibodies in 50 patients with cicatricial pemphigoid. J Dermatol Sci 1998; 17: 39–44 CrossRef
e56.Calabresi V, Carrozzo M, Cozzani E, et al.: Oral pemphigoid autoantibodies preferentially target BP180 ectodomain. Clin Immunol 2007; 122: 207–13 CrossRef MEDLINE
e57.Schmidt E, Skrobek C, Kromminga A, et al.: Cicatricial pemphigoid: IgA and IgG autoantibodies target epitopes on both intra- and extracellular domains of bullous pemphigoid antigen 180. Br J Dermatol 2001; 145: 778–83 CrossRef MEDLINE
e58.Schmidt E, Obe K, Brocker EB, Zillikens D: Serum levels of autoantibodies to BP180 correlate with disease activity in patients with bullous pemphigoid. Arch Dermatol 2000; 136: 174–8 CrossRef MEDLINE
e59.Kim JH, Kim YH, Kim S, et al.: Serum levels of anti-type VII collagen antibodies detected by enzyme-linked immunosorbent assay in patients with epidermolysis bullosa acquisita are correlated with the severity of skin lesions. J Eur Acad Dermatol Venereol 2012; 27: e224–30 CrossRef MEDLINE
e60.Horvath ON, Varga R, Kaneda M, Schmidt E, Ruzicka T, Sardy M: Diagnostic performance of the „MESACUP anti-Skin profile TEST“. Eur J Dermatol 2016; 26: 56–63 CrossRef MEDLINE
e61.van Beek N, Rentzsch K, Probst C, et al.: Serological diagnosis of autoimmune bullous skin diseases: prospective comparison of the BIOCHIP mosaic-based indirect immunofluorescence technique with the conventional multi-step single test strategy. Orphanet J Rare Dis 2012; 7: 49 CrossRef MEDLINE PubMed Central
e62.Yang A, Xuan R, Melbourne W, Tran K, Murrell DF: Validation of the BIOCHIP test for the diagnosis of bullous pemphigoid, pemphigus vulgaris and pemphigus foliaceus. J Eur Acad Dermatol Venereol 2020; 34: 153–60 CrossRef MEDLINE
e63.Komorowski L, Muller R, Vorobyev A, et al.: Sensitive and specific assays for routine serological diagnosis of epidermolysis bullosa acquisita. J Am Acad Dermatol 2012; 68: e89–95 CrossRef MEDLINE
e64.Waschke J, Spindler V: Desmosomes and extradesmosomal adhesive signaling contacts in pemphigus. Med Res Rev 2014; 34: 1127–45 CrossRef MEDLINE
e65.Hammers CM, Stanley JR: Mechanisms of disease: pemphigus and bullous pemphigoid. Annu Rev Pathol 2016; 11: 175–97 CrossRef MEDLINE PubMed Central
e66.Sadik CD, Schmidt E, Zillikens D, Hashimoto T: Recent progresses and perspectives in autoimmune bullous diseases. J Allergy Clin Immunol 2020; 145: 1145–7 CrossRef MEDLINE
e67.Sadik CD, Zillikens D: Current treatments and developments in pemphigoid diseases as paradigm diseases for autoantibody-driven, organ-specific autoimmune diseases. Semin Hematol 2016; 53 (Suppl 1): S51–3 CrossRef MEDLINE
e68.Anhalt GJ, Labib RS, Voorhees JJ, Beals TF, Diaz LA: Induction of pemphigus in neonatal mice by passive transfer of IgG from patients with the disease. N Engl J Med 1982; 306: 1189–96 CrossRef MEDLINE
e69.Amagai M, Tsunoda K, Suzuki H, Nishifuji K, Koyasu S, Nishikawa T: Use of autoantigen-knockout mice in developing an active autoimmune disease model for pemphigus. J Clin Invest 2000; 105: 625–31 CrossRef MEDLINE PubMed Central
e70.Eming R, Hennerici T, Backlund J, et al.: Pathogenic IgG antibodies against desmoglein 3 in pemphigus vulgaris are regulated by HLA-DRB1*04:02-restricted T cells. J Immunol 2014; 193: 4391–9 CrossRef MEDLINE
e71.Liu Z, Diaz LA, Troy JL, et al.: A passive transfer model of the organ-specific autoimmune disease, bullous pemphigoid, using antibodies generated against the hemidesmosomal antigen, BP180. J Clin Invest 1993; 92: 2480–8 CrossRef MEDLINE PubMed Central
e72.Nishie W, Sawamura D, Goto M, et al.: Humanization of autoantigen. Nat Med 2007; 13: 378–83 CrossRef MEDLINE
e73.Sitaru C, Mihai S, Otto C, et al.: Induction of dermal-epidermal separation in mice by passive transfer of antibodies specific to type VII collagen. J Clin Invest 2005; 115: 870–8 CrossRef MEDLINE PubMed Central
e74.Haeberle S, Wei X, Bieber K, et al.: Regulatory T-cell deficiency leads to pathogenic bullous pemphigoid antigen 230 autoantibody and autoimmune bullous disease. J Allergy Clin Immunol 2018; 142: 1831–42. e7 CrossRef MEDLINE
e75.Heppe EN, Tofern S, Schulze FS, et al.: Experimental laminin 332 mucous membrane pemphigoid critically involves C5aR1 and reflects clinical and immunopathological characteristics of the human disease. J Invest Dermatol 2017; 137: 1709–18 CrossRef MEDLINE
e76.Sadik CD, Schmidt E: Resolution in bullous pemphigoid. Semin Immunopathol 2019; 41: 645–54 CrossRef MEDLINE PubMed Central
e77.Karsten CM, Pandey MK, Figge J, et al.: Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcgammaRIIB and dectin-1. Nat Med 2012; 18: 1401–6 CrossRef MEDLINE PubMed Central
e78.Koga H, Kasprick A, Lopez R, et al.: Therapeutic effect of a novel phosphatidylinositol-3-kinase delta inhibitor in experimental epidermolysis bullosa acquisita. Front Immunol 2018; 9: 1558 CrossRef MEDLINE PubMed Central
e79.Samavedam UK, Mitschker N, Kasprick A, et al.: Whole-genome expression profiling in skin reveals SYK as a key regulator of inflammation in experimental epidermolysis bullosa acquisita. Front Immunol 2018; 9: 249 CrossRef MEDLINE PubMed Central
e80.Stussel P, Dieckhoff KS, Kunzel S, et al.: Propranolol is an effective topical and systemic treatment option for experimental epidermolysis bullosa acquisita. J Invest Dermatol 2020; 140: 2408–20 CrossRef MEDLINE
e81.Gunther C, Wozel G, Meurer M, Pfeiffer C: Up-regulation of CCL11 and CCL26 is associated with activated eosinophils in bullous pemphigoid. Clin Exp Immunol 2011; 166: 145–53 CrossRef MEDLINE PubMed Central
e82.Shrikhande M, Hunziker T, Braathen LR, Pichler WJ, Dahinden CA, Yawalkar N: Increased coexpression of eotaxin and interleukin 5 in bullous pemphigoid. Acta Derm Venereol 2000; 80: 277–80 CrossRef MEDLINE
e83.Wakugawa M, Nakamura K, Hino H, et al.: Elevated levels of eotaxin and interleukin-5 in blister fluid of bullous pemphigoid: correlation with tissue eosinophilia. Br J Dermatol 2000; 143: 112–6 CrossRef MEDLINE
e84.Schmidt E, Lambert A, Marzano A, et al.: S3 guideline on the diagnosis and management of mucous membrane pemphigoid initiated by the European Academy of Dermatology and Venereology (EADV). J Eur Acad Dermatol Venereol (in preparation).
e85.Lee A, Sandhu S, Imlay-Gillespie L, Mulligan S, Shumack S: Successful use of Bruton‘s kinase inhibitor, ibrutinib, to control paraneoplastic pemphigus in a patient with paraneoplastic autoimmune multiorgan syndrome and chronic lymphocytic leukaemia. Australas J Dermatol 2017; 58: e240-e2 CrossRef MEDLINE
e86.Hofrichter M, Dworschak J, Emtenani S, et al.: Immunoadsorption o f desmoglein-3-specific IgG abolishes the blister-inducing capacity of pemphigus vulgaris IgG in neonatal mice. Front Immunol 2018; 9: 1935 CrossRef MEDLINE PubMed Central
e87.Hubner F, Kasperkiewicz M, Knuth-Rehr D, et al.: Adjuvant treatment of severe/refractory bullous pemphigoid with protein A immunoadsorption. J Dtsch Dermatol Ges 2018; 16: 1109–18 CrossRef
e88.Bastuji-Garin S, Souissi R, Blum L, et al.: Comparative epidemiology of pemphigus in Tunisia and France: unusual incidence of pemphigus foliaceus in young Tunisian women. J Invest Dermatol 1995; 104: 302–5 CrossRef MEDLINE
e89.Stanley J: Pemphigus. In: Wolff K GL, Katz SI, et al. (ed.): Fitzpatrick’s dermatology in general medicine. New York: McGraw-Hill 2008; p. p. 459–68.
e90.Bernard P, Vaillant L, Labeille B, et al.: Incidence and distribution of subepidermal autoimmune bullous skin diseases in three French regions. Bullous Diseases French Study Group. Arch Dermatol 1995; 131: 48–52 CrossRef CrossRef MEDLINE
e91.Radford CF, Rauz S, Williams GP, Saw VP, Dart JK: Incidence, presenting features, and diagnosis of cicatrising conjunctivitis in the United Kingdom. Eye (Lond) 2012; 26: 1199–208 CrossRef MEDLINE PubMed Central
e92.Milinkovic MV, Jankovic S, Medenica L, et al.: Incidence of autoimmune bullous diseases in Serbia: a 20-year retrospective study. J Dtsch Dermatol Ges 2016; 14: 995–1005 CrossRef
e93.van Beek N, Knuth-Rehr D, Altmeyer P, et al.: Diagnostics of autoimmune bullous diseases in German dermatology departments. J Dtsch Dermatol Ges 2012; 10: 492–9 CrossRef MEDLINE
e94.Tsuruta D, Ishii N, Hamada T, et al.: IgA pemphigus. Clin Dermatol 2011; 29: 437–42 CrossRef MEDLINE
e95.Kridin K, Patel PM, Jones VA, Cordova A, Amber KT: IgA pemphigus: a systematic review. J Am Acad Dermatol 2020; 82: 1386–92 CrossRef MEDLINE
e96.Wojnarowska F, Kirtschig G, Khumalo N: Treatment of subepidermal immunobullous diseases. Clin Dermatol 2001; 19: 768–77 CrossRef
e97.Kasperkiewicz M, Meier M, Zillikens D, Schmidt E: Linear IgA disease: successful application of immunoadsorption and review of the literature. Dermatology 2010; 220: 259–63 CrossRef MEDLINE
e98.Iwata H, Vorobyev A, Koga H, et al.: Meta-analysis of the clinical and immunopathological characteristics and treatment outcomes in epidermolysis bullosa acquisita patients. Orphanet J Rare Dis 2018; 13: 153 CrossRef MEDLINE PubMed Central
e99.Santi CG, Gripp AC, Roselino AM, et al.: Consensus on the treatment of autoimmune bullous dermatoses: bullous pemphigoid, mucous membrane pemphigoid and epidermolysis bullosa acquisita— Brazilian Society of Dermatology. An Bras Dermatol 2019; 94: 33–47 CrossRef MEDLINE PubMed Central
e100.Hahn-Ristic K, Rzany B, Amagai M, Bröcker E-B, Zillikens D: Increased incidence of pemphigus vulgaris in southern Europeans living in Germany compared with native Germans. Eur Acad Dermatol Venereol 2002; 16:68–71 CrossRef MEDLINE