cme
Acute Kidney Injury
Dtsch Arztebl Int 2019; 116: 833-42. DOI: 10.3238/arztebl.2019.0833
; ; ;
1. | Li PK, Burdmann EA, Mehta RL: World Kidney Day Steering Committee 2013: Acute kidney injury: global health alert. Kidney Int 2013; 83: 372–6 CrossRef MEDLINE |
2. | Lewington AJ, Cerdá J, Mehta RL: Raising awareness of acute kidney injury: a global perspective of a silent killer. Kidney Int 2013; 84: 457–67 CrossRef MEDLINE PubMed Central |
3. | Bellomo R, Kellum JA, Ronco C: Acute kidney injury. Lancet 2012; 380: 756–66 CrossRef |
4. | Hoste EA, Bagshaw SM, Bellomo R et al.: Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 015; 41: 1411–23 CrossRef MEDLINE |
5. | Siew ED, Davenport A: The growth of acute kidney injury: a rising tide or just closer attention to detail? Kidney Int 2015; 87: 46–61 CrossRef MEDLINE PubMed Central |
6. | Wu HC, Lee LC, Wang WJ: Incidence and mortality of postoperative acute kidney injury in non-dialysis patients: comparison between the AKIN and KDIGO criteria. Ren Fail 2016; 38: 330–9 CrossRef MEDLINE |
7. | Petäjä L, Vaara S, Liuhanen S, et al.: Acute kidney injury after cardiac surgery by complete KDIGO criteria predicts increased mortality. J Cardiothorac Vasc Anesth 2017; 31: 827–36 CrossRef MEDLINE |
8. | Lafrance JP, Miller DR: Acute kidney injury associates with increased long-term mortality. J Am Soc Nephrol 2010; 21: 345–52 CrossRef MEDLINE PubMed Central |
9. | Wu VC, Shiao CC, Chang CH, et al.: Long-term outcomes after dialysis-requiring acute kidney injury. Biomed Res Int 2014; 2014: 365186 CrossRef MEDLINE PubMed Central |
10. | Khadzhynov D, Schmidt D, Hardt J, et al.: The incidence of acute kidney injury and associated hospital mortality—a retrospective cohort study of over 100 000 patients at Berlin‘s Charité hospital. Dtsch Arztebl Int 2019; 116: 397–404. |
11. | Wilson FP, Bansal AD, Jasti SK, et al.: The impact of documentation of severe acute kidney injury on mortality. Clin Nephrol 2013; 80: 417–25 CrossRef MEDLINE PubMed Central |
12. | Yang L, Xing G, Wang L, et al.: Acute kidney injury in China: a cross-sectional survey. Lancet 2015; 386: 1465–71 CrossRef |
13. | Mitchell T, Feher E, Mitchell G, Chakera A: Acute kidney injury is under-recognised and under-reported in hospitalised patients in Australia. Intern Med J 2017; 47: 1451–4 CrossRef MEDLINE |
14. | Hansen MK, Gammelager H, Mikkelsen MM, et al.: Post-operative acute kidney injury and five-year risk of death, myocardial infarction, and stroke among elective cardiac surgical patients: a cohort study. Crit Care 2013; 17: R292 CrossRef MEDLINE PubMed Central |
15. | Wu VC, Wu PC, Wu CH, et al.: The impact of acute kidney injury on the long-term risk of stroke. J Am Heart Assoc 2014; 3. 10.1161/JAHA CrossRef |
16. | KDIGO Clinical practice guideline for acute kidney injury. Kidney Int 2012, 3. |
17. | Alscher MD, Erley C, Kuhlmann MK: Acute renal failure of nosocomial origin. Dtsch Arztebl Int 2019; 116: 149–58 CrossRef MEDLINE PubMed Central |
18. | Abdulla MH, Sattar MA, Abdullah NA, et al.: Effect of renal sympathetic nerve on adrenergically and angiotensin II-induced renal vasoconstriction in normal Wistar-Kyoto rats. Ups J Med Sci 2011; 116: 18–25 CrossRef MEDLINE PubMed Central |
19. | Dinh QN, Drummond GR, Kemp-Harper BK, et al.: Pressor response to angiotensin II is enhanced in aged mice and associated with inflammation, vasoconstriction and oxidative stress. Aging 2017; 9: 1595–606 CrossRef MEDLINE PubMed Central |
20. | Bonventre JV, Yang L: Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 2011; 121: 4210–21 CrossRef MEDLINE PubMed Central |
21. | Aird WC: The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 2003; 101: 3765–77 CrossRef MEDLINE |
22. | Karlberg L, Norlén BJ, Ojteg G, Wolgast M: Impaired medullary circulation in postischemic acute renal failure. Acta Physiol Scand 1983; 118: 11–7 CrossRef MEDLINE |
23. | Kellum JA, Sileanu FE, Murugan R, Lucko N, Shaw AD, Clermont G: Classifying AKI by urine output versus serum creatinine level. J Am Soc Nephrol 2015; 26: 2231–8 CrossRef MEDLINE PubMed Central |
24. | Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL: AWARE Investigators: Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med 2017; 376: 11–20 CrossRef MEDLINE PubMed Central |
25. | Leedahl DD, Frazee EN, Schramm GE, et al.: Derivation of urine output thresholds that identify a very high risk of AKI in patients with septic shock. Clin J Am Soc Nephrol 2014; 9: 1168–74 CrossRef MEDLINE PubMed Central |
26. | Grams ME, Sang Y, Coresh J, et al.: Acute kidney injury after major surgery: a retrospective analysis of Veterans health administration data. Am J Kidney Dis 2016; 67: 872–80 CrossRef MEDLINE PubMed Central |
27. | O’Connor ME, Kirwan CJ, Pearse RM, Prowle JR: Incidence and associations of acute kidney injury after major abdominal surgery. Intensive Care Med 2016; 42: 521–30 CrossRef MEDLINE |
28. | Lassnigg A, Schmidlin D, Mouhieddine M, et al.: Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol 2004; 15: 1597–605 CrossRef MEDLINE |
29. | Praught ML, Shlipak MG: Are small changes in serum creatinine an important risk factor? Curr Opin Nephrol Hypertens 2005; 14: 265–70 CrossRef MEDLINE |
30. | Molitoris BA, Reilly E: Quantifying glomerular filtration rates in acute kidney injury: A requirement for translational success. Semin Nephrol 2016; 36: 31–41 CrossRef MEDLINE PubMed Central |
31. | Prowle JR, Kolic I, Purdell-Lewis J, et. al.: Serum creatinine changes associated with critical illness and detection of persistent renal dysfunction after AKI. Clin J Am Soc Nephrol 2014; 9: 1015–23 CrossRef MEDLINE PubMed Central |
32. | Schetz M, Schortgen F: Ten shortcomings of the current definition of AKI. Intensive Care Med 2017; 43: 911–3 CrossRef MEDLINE |
33. | Heimbürger O, Stenvinkel P, Bárány P: The enigma of decreased creatinine generation in acute kidney injury. Nephrol Dial Transplant 2012; 27: 3973–4 CrossRef MEDLINE |
34. | Nickolas TL, Schmidt-Ott KM, Canetta P et al.: Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J Am Coll Cardiol 2012; 59: 246–55 CrossRef MEDLINE PubMed Central |
35. | Haase M, Devarajan P, Haase-Fielitz A, et al.: The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol 2011; 57: 1752–61 CrossRef MEDLINE PubMed Central |
36. | Bihorac A, Kellum JA: Acute kidney injury in 2014: a step towards understanding mechanisms of renal repair. Nat Rev Nephrol 2015; 11: 74–5 CrossRef MEDLINE PubMed Central |
37. | Meersch M, Schmidt C, Van Aken H et al.: Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS One 2014; 9: e93460 CrossRef MEDLINE PubMed Central |
38. | Kashani K, Al-Khafaji A, Ardiles T, et al.: Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 2013; 17: R25. |
39. | Cummings JJ, Shaw AD, Shi J: Intraoperative prediction of cardiac surgery-associated acute kidney injury using urinary biomarkers of cell cycle arrest. J Thorac Cardiovasc Surg 2019; 157: 1545–53.e5 CrossRef MEDLINE |
40. | Aregger F, Uehlinger DE, Witowski J, et al.: Identification of IGFBP-7 by urinary proteomics as a novel prognostic marker in early acute kidney injury. Kidney Int 2014; 85: 909–19 CrossRef MEDLINE |
e1. | Arthur JM, Hill EG, Alge JL, et al.: Evaluation of 32 urine biomarkers to predict the progression of acute kidney injury after cardiac surgery. Kidney Int 2014; 85: 431–8 CrossRef MEDLINE PubMed Central |
e2. | Koyner JL, Garg AX, Coca SG, et al: Biomarkers predict progression of acute kidney injury after cardiac surgery. J Am Soc Nephrol 2012; 23: 905–14 CrossRef MEDLINE PubMed Central |
e3. | Cummings JJ, Shaw AD, Shi J: Intraoperative prediction of cardiac surgery-associated acute kidney injury using urinary biomarkers of cell cycle arrest. J Thorac Cardiovasc Surg 2019; 157: 1545–53.e5 CrossRef MEDLINE |
e4. | Haase M, Kellum JA, Ronco C: Subclinical AKI–an emerging syndrome with important consequences. Nat Rev Nephrol 2012; 8: 735–9 CrossRef MEDLINE |
e5. | Haase M, Devarajan P, Haase-Fielitz A, et al.: The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol 2011; 57: 1752–61 CrossRef MEDLINE PubMed Central |
e6. | Nickolas TL, Schmidt-Ott KM, Canetta P, et al.: Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J Am Coll Cardiol 2012; 59: 246–55 CrossRef MEDLINE PubMed Central |
e7. | Chawla LS, Bellomo R, Bihorac A, et al.: Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat Rev Nephrol 2017; 13: 241–57 CrossRef MEDLINE |
e8. | Meersch M, Schmidt C, Hoffmeier A, et al.: Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med 2017; 43: 1551–61 CrossRef CrossRef MEDLINE PubMed Central |
e9. | Vijayan A, Faubel S, Askenazi DJ, et al.: Clinical use of the urine biomarker [TIMP-2] × [IGFBP7] for acute kidney injury risk assessment. Am J Kidney Dis 2016; 68: 19–28 CrossRef MEDLINE PubMed Central |
e10. | Basu RK, Wang Y, Wong HR, Chawla LS, Wheeler DS, Goldstein SL: Incorporation of biomarkers with the renal angina index for prediction of severe AKI in critically ill children. Clin J Am Soc Nephrol 2014; 9: 654–6 CrossRefMEDLINE PubMed Central |
e11. | Goldstein SL, Chawla LS: Renal angina. Clin J Am Soc Nephrol 2010; 5: 943–9 CrossRef MEDLINE |
e12. | Koyner JL, Davison DL, Brasha-Mitchell E, et al.: Furosemide stress test and biomarkers for the prediction of AKI severity. J Am Soc Nephrol 2015; 26: 2023–31 CrossRef MEDLINE PubMed Central |
e13. | Chawla LS, Davison DL, Brasha-Mitchell E, et al.: Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care 2013; 17: R207 CrossRef MEDLINE PubMed Central |
e14. | KDIGO: KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2012; 2: 1–138. |
e15. | Meersch M, Schmidt C, Hoffmeier A, et al.: Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med 2017; 43: 1551–61 CrossRef CrossRef MEDLINE PubMed Central |
e16. | Göcze I, Jauch D, Götz M, et al.: Biomarker-guided intervention to prevent acute kidney injury after major surgery: the prospective randomized BigpAK study. Ann Surg 2018; 267: 1013–20 CrossRef MEDLINE |
e17. | Leone M, Ragonnet B, Alonso S, et al.: Variable compliance with clinical practice guidelines identified in a 1-day audit at 66 French adult intensive care units. Crit Care Med 2012; 40: 3189–95 CrossRef MEDLINE |
e18. | Kolhe NV, Reilly T, Leung J, et al.: A simple care bundle for use in acute kidney injury: a propensity score-matched cohort study. Nephrol Dial Transplant 2016; 31: 1846–54 CrossRef CrossRef MEDLINE |
e19. | Sun LY, Wijeysundera DN, Tait GA, Beattie WS: Association of intraoperative hypotension with acute kidney injury after elective non-cardiac surgery. Anesthesiology 2015; 123: 515–23 CrossRef MEDLINE |
e20. | Walsh M, Devereaux PJ, Garg AX, et al.: Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology 2013; 119: 507–15 CrossRef MEDLINE |
e21. | Dünser MW, Takala J, Ulmer H, et al.: Arterial blood pressure during early sepsis and outcome. Intensive Care Med 2009; 35: 1225–33 CrossRef MEDLINE |
e22. | Pearse RM, Harrison DA, MacDonald N, et al.: Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA 2014; 311: 2181–90 CrossRef MEDLINE |
e23. | Grocott MP, Dushianthan A, Hamilton MA, Mythen MG, Harrison D, Rowan K: Optimisation Systematic Review Steering Group. Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a Cochrane Systematic Review. Br J Anaesth 2013; 111: 535–48 CrossRef MEDLINE |
e24. | Benes J, Chytra I, Altmann P, et al.: Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit Care 2010; 14: R118 CrossRef MEDLINE PubMed Central |
e25. | Brienza N, Giglio MT, Marucci M, Fiore T: Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med 2009; 37: 2079–90 CrossRef MEDLINE |
e26. | Futier E, Lefrant JY, Guinot PG, et al.: Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: A randomized clinical trial. JAMA 2017; 318: 1346–57 CrossRef MEDLINE PubMed Central |
e27. | Myles PS, Bellomo R, Corcoran T, et al.: Restrictive versus liberal fluid therapy for major abdominal surgery. N Engl J Med 2018; 378: 2263–74 CrossRef MEDLINE |
e28. | Haase-Fielitz A, Haase M, Bellomo R, et al.: Perioperative hemodynamic instability and fluid overload are associated with increasing acute kidney injury severity and worse outcome after cardiac surgery. Blood Purif 2017; 43: 298–308 CrossRef MEDLINE |
e29. | Prowle JR, Kirwan CJ, Bellomo R: Fluid management for the prevention and attenuation of acute kidney injury. Nat Rev Nephrol 2013; 10: 37–47 CrossRef MEDLINE |
e30. | Basu RK, Wheeler DS: Kidney-lung cross-talk and acute kidney injury. Pediatr Nephrol 2013; 28: 2239–48 CrossRef MEDLINE PubMed Central |
e31. | Grams ME, Rabb H: The distant organ effects of acute kidney injury. Kidney Int 2012; 81: 942–48 CrossRef MEDLINE |
e32. | Feltes CM, Hassoun HT, Lie ML, Cheadle C, Rabb H: Pulmonary endothelial cell activation during experimental acute kidney injury. Shock 2011; 36: 170–6 CrossRef MEDLINE PubMed Central |
e33. | Bullivant EM, Wilcox CS, Welch WJ: Intrarenal vasoconstriction during hyperchloremia: role of thromboxane. Am J Physiol 1989; 256: 152–7 CrossRef MEDLINE |
e34. | Chowdhury AH, Cox EF, Francis ST, et al.: A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg 2012; 256: 18–24 CrossRef MEDLINE |
e35. | Zhou F, Peng ZY, Bishop JV, et al.: Effects of fluid resuscitation with 0.9% saline versus a balanced electrolyte solution on acute kidney injury in a rat model of sepsis. Crit Care Med 2014; 42: e270–8 CrossRef MEDLINE PubMed Central |
e36. | Li H, Sun SR, Yap JQ, et al.: 0.9% saline is neither normal nor physiological. J Zhejiang Univ Sci B 2016; 17: 181–7 CrossRef MEDLINE PubMed Central |
e37. | McCluskey SA, Karkouti K, Wijeysundera D, Minkovich L, Tait G, Beattie WS: Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study. Anesth Analg 2013; 117: 412–21 CrossRef MEDLINE |
e38. | Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M: Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 2012; 308: 1566–72 CrossRef MEDLINE |
e39. | Semler MW, Self WH, Wanderer JP, et al.: Balanced crystalloids versus saline in critically ill adults. N Engl J Med 2018; 378: 829–39 CrossRef MEDLINE PubMed Central |
e40. | Self WH, Semler MW, Wanderer JP, et al.: Balanced crystalloids versus saline in noncritically ill adults. N Engl J Med 2018; 378: 819–28 CrossRef MEDLINE PubMed Central |
e41. | Kümpers P: Volumensubstitution mit NaCl 0,9 %. Internist 2015; 56: 773–8 CrossRef MEDLINE |
e42. | Mullens W, Abrahams Z, Francis GS, et al.: Importance of venous congestion for worsening of renal function inadvanced decompensated heart failure. J Am Coll Cardiol 2009; 53: 589–96 CrossRef MEDLINE PubMed Central |
e43. | Tarvasmäki T, Haapio M, Mebazaa A, et al.: Acute kidney injury in cardiogenic shock: definitions, incidence, haemodynamic alterations, and mortality. Eur J Heart Fail 2018; 20: 572–81 CrossRef MEDLINE |
e44. | Chen X, Wang X, Honore PM, et al.: Renal failure in critically ill patients, beware of applying (central venous) pressure on the kidney. Ann Intensive Care 2018; 8: 91 CrossRef MEDLINE PubMed Central |
e45. | Damman K, van Deursen VM, Navis G, et al.: Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol 2009; 53: 582–8 CrossRef MEDLINE |
e46. | Westaby S, Balacumaraswami L, Sayeed R: Maximizing survival potential in very high risk cardiac surgery. Heart Fail Clin 2007; 3: 159–80 CrossRef MEDLINE |
e47. | Fowler AJ, Ahmad T, Phull MK, Allard S, Gillies MA, Pearse RM: Meta-analysis of the association between preoperative anaemia and mortality after surgery. Br J Surg 2015; 102: 1314–24 CrossRef MEDLINE |
e48. | Walsh M, Garg AX, Devereaux PJ, et al.: The association between perioperative hemoglobin and acute kidney injury in patients having noncardiac surgery. Anesth Analg 2013; 117: 924–31 CrossRef MEDLINE |
e49. | Karkouti K, Stukel TA, Beattie WS, et al.: Relationship of erythrocyte transfusion with short- and long-term mortality in a population-based surgical cohort. Anesthesiology 2012; 117: 1175–83 CrossRef MEDLINE |
e50. | Karkouti K, Grocott HP, Hall R, et al.: Interrelationship of preoperative anemia, intraoperative anemia, and red blood cell transfusion as potentially modifiable risk factors for acute kidney injury in cardiac surgery: a historical multicentre cohort study. Can J Anaesth 2015; 62: 377–84 CrossRef MEDLINE |
e51. | Haase M, Bellomo R, Story D, et al.: Effect of mean arterial pressure, haemoglobin and blood transfusion during cardiopulmonary bypass on post-operative acute kidney injury. Nephrol Dial Transplant 2012; 27: 153–60 CrossRef MEDLINE |
e52. | Ji F, Li Z, Young JN, Yeranossian A, Liu H: Post-bypass dexmedetomidine use and postoperative acute kidney injury in patients undergoing cardiac surgery with cardiopulmonary bypass. PLoS One 2013; 8: e77446 CrossRef MEDLINE PubMed Central |
e53. | Xue F, Zhang W, Chu HC: Assessing perioperative dexmedetomidine reduces the incidence and severity of acute kidney injury following valvular heart surgery. Kidney Int 2016; 89: 1164 CrossRef MEDLINE |
e54. | Kwiatkowski DM, Axelrod DM, Sutherland SM, Tesoro TM, Krawczeski CD: Dexmedetomidine is associated with lower incidence of acute kidney injury after congenital heart surgery. Pediatr Crit Care Med 2016; 17: 128–34 CrossRef MEDLINE |
e55. | Cho JS, Shim JK, Soh S, Kim MK, Kwak YL: Perioperative dexmedetomidine reduces the incidence and severity of acute kidney injury following valvular heart surgery. Kidney Int 2016; 89: 693–700 CrossRef MEDLINE |
e56. | Balkanay OO, Goksedef D, Omeroglu SN, Ipek G: The doserelated effects of dexmedetomidine on renal functions and serum neutrophil gelatinase-associated lipocalin values after coronary artery bypass grafting: a randomized, triple-blind, placebo-controlled study. Interact Cardiovasc Thorac Surg 2015; 20: 209–14 CrossRef MEDLINE |
e57. | Lee HT, Ota-Setlik A, Fu Y, Nasr SH, Emala CW: Differential protective effects of volatile anesthetics against renal ischemia-reperfusion injury in vivo. Anesthesiology 2004; 101: 1313–24 CrossRef MEDLINE |
e58. | Hashiguchi H, Morooka H, Miyoshi H, Matsumoto M, Koji T, Sumikawa K: Isoflurane protects renal function against ischemia and reperfusion through inhibition of protein kinases, JNK and ERK. Anesth Analg 2005; 101: 1584–9 CrossRef MEDLINE |
e59. | Fukazawa K, Lee TH: Volatile Anesthetics and AKI: Risks, Mechanisms, and a Potential Therapeutic Window. J Am Soc Nephrol 2014; 25: 884–92 CrossRef MEDLINE PubMed Central |
e60. | Murugan R, Weissfeld L, Yende S, et al.: Association of statin use with risk and outcome of acute kidney injury in community-acquired pneumonia. Clin J Am Soc Nephrol 2012; 7: 895–905 CrossRef MEDLINE PubMed Central |
e61. | Billings FT, Hendricks PA, Schildcrout JS, et al.: High-dose perioperative atorvastatin and acute kidney injury following cardiac surgery: a randomized clinical trial. JAMA 2016; 315: 877–88 CrossRef MEDLINE PubMed Central |
e62. | Thakar CV: Perioperative acute kidney injury. Adv Chronic Kidney Dis 2013; 20: 67–75 CrossRef MEDLINE |
e63. | Halliwell B, Gutteridge JM: Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 1990; 186: 1–85 CrossRef |
e64. | Haase M, Haase-Fielitz A, Plass M, et al.: Prophylactic perioperative sodium bicarbonate to prevent acute kidney injury following open heart surgery: a multicenter double-blinded randomized controlled trial. PLoS Med 2013; 10: e1001426 CrossRef MEDLINE PubMed Central |
e65. | McGuinness SP, Parke RL, Bellomo R, Van Haren FM, Bailey M: Sodium bicarbonate infusion to reduce cardiac surgery-associated acute kidney injury: a phase II multicenter double-blind randomized controlled trial. Crit Care Med 2013; 41: 1599–1607 CrossRef MEDLINE |
e66. | Wierstra BT, Kadri S, Alomar S, Burbano X, Barrisford GW, Kao RL: The impact of “early” versus “late” initiation of renal replacement therapy in critical care patients with acute kidney injury: a systematic review and evidence synthesis. Crit Care 2016; 20: 122 CrossRef MEDLINE PubMed Central |
e67. | Zarbock A, Kellum JA, Schmidt C, et al.: Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA 2016; 315: 2190–9 CrossRef MEDLINE |