Medizin

Menschliches „Mini-Gehirn“ im Labor gezüchtet

Donnerstag, 29. August 2013

Wien – Österreichische Forscher haben in einem Bioreaktor aus menschlichen Stamm­zellen ein zerebrales Organoid von der Größe einer Erbse gezüchtet, das die ersten Entwicklungsphasen des menschlichen Gehirns durchlaufen hat. Das in Nature (2013; doi: 10.1038/nature12517) vorgestellte Modell wurde genutzt, um bei einem Patienten die Pathogenese einer Mikrozephalie näher zu untersuchen.

Anzeige

In geeigneten Kulturmedien entwickeln sich Stammzellen – die zuvor aus einer Blasto­zyste eines Embryos entnommen oder aus Körperzellen zu einer induzierten pluripotente Stammzelle reprogrammiert wurden – selbstständig zu einem Neuroektoderm, der ersten Entwicklungsstufe des menschlichen Nervensystems in der frühen Embryonalphase. Bis zu diesem Stadium kann die Entwicklung in einer Petrischale nachgestellt werden.

Danach sind komplexere Kultursysteme notwendig. Das Team um Jürgen Knoblich vom Institut für Molekulare Biotechnologie der österreichischen Akademie der Wissenschaften in Wien verwendet einen speziellen Bioreaktor. Dort sind sie Zellen in ein Matrigel einge­bettet, das eine dreidimensionale Entwicklung ermöglicht. Nach acht bis zehn Tagen entstand nach Angabe der Autoren ein neuronales Gewebe, nach 20 bis 30 Tagen kam es zu einer Spezialisierung der Zellen, wie sie in unterschiedlichen Hirnregionen gefunden wird.

Die zerebralen Organoide wuchsen bis zu einer Größe von etwa 4 Millimetern heran. Danach ist das Kulturmedium, das das „Mini-Gehirn“ ständig von außen umspült, nicht mehr in der Lage die Zellen im Inneren des Organoids ausreichend mit Nährstoffen und Sauerstoff zu versorgen und es kommt zu einer zentralen Nekrose. Die äußere Schicht kann zwar weiter am Leben erhalten werden, in den Experimenten mittlerweile bis zu zehn Monate, doch die Hirnentwicklung kommt nicht über einen Stand hinaus, der der neunten Woche der Embryonalentwicklung entsprechen soll.

Die Abbildungen der Studie zeigen Organoide, in denen sich um einen inneren Hohlraum (Ventrikel) herum zunächst eine Schicht neuronaler Vorläuferzellen befindet, aus denen sich nach einer Migration an den äußeren Rand (Cortex) ausdifferenzierte Nervenzellen bilden. Dies entspricht in etwa der natürlichen Entwicklung des menschlichen Gehirns, die ebenfalls von einer Zellschicht in der Nähe der späteren Ventrikel ausgeht. Der Cortex der Organoide zeigt sogar die für das menschliche Gehirn typische Schichtung in mehrere Zelllagen. Die Forscher konnten beispielsweise die für die Architektur des Cortex bedeutsamen Cajal-Retzius-Zellen nachweisen.

An anderen Stellen der Organoide bilden sich Strukturen die dem Plexus choroideus ähneln, der im ausgereiften Gehirn den Liquor produziert. Mittels spezieller Marker konnten die Forscher unterschiedliche Hirnzellen differenzieren wie sie beispielsweise im Hippocampus gefunden werden. An andere Stelle wurden Strukturen erkennbar, die an eine Retina oder an Hirnhäute erinnern.

Das alles ist natürlich noch nicht mit dem ausgereiften menschlichen Gehirn vergleich­bar, der komplexesten Struktur in der Natur, und ein weiteres Wachstum erscheint ohne ein differenziertes System aus Blutgefäßen kaum vorstellbar. Die Organoide könnten jedoch genutzt werden, um die Entwicklung von Hirnerkrankungen zu erforschen, was Knoblich am Beispiel eines Patienten mit einer angeborenen Mikrozephalie zeigt.

Dem Patienten wurde durch eine Hautbiopsie entnommen, um die daraus isolierten Fibroblasten in induzierte pluripotente Stammzelle zu verwandeln, aus denen dann ein zerebrales Organoid gezüchtet wurde. Die Untersuchung ergab, dass ein bei dem Patienten bekannter Gendefekt zu einer vorzeitigen Ausreifung der Hirnzellen geführt hat. Dies könnte erklären, warum das Hirnwachstum vorzeitig stoppte und der Patient ein zu kleines Gehirn hat.

Die Organoide könnten laut Knoblich viele Tierexperimente ersetzen, die in der Hirn­forschung wegen der Unterschiede zwischen Menschen und beispielsweise Mäusen sehr schnell an ihre Grenzen stoßen. Die Forscher hoffen, auch bei anderen Krankheiten, die mit entwicklungsbiologischen Störungen des Gehirns in Zusammenhang stehen, zu neuen Erkenntnissen zu gelangen.

Als Beispiele werden Autismus und Schizophrenie genannt. Ethische Probleme sehen sie nicht, da die Organentwicklung nicht sehr weit fortschreitet und weit entfernt sei von den komplexen Leistungen des ausgereiften menschlichen Gehirns. © rme/aerzteblatt.de

Leserkommentare

E-Mail
Passwort

Registrieren

Um Artikel, Nachrichten oder Blogs kommentieren zu können, müssen Sie registriert sein. Sind sie bereits für den Newsletter oder den Stellenmarkt registriert, können Sie sich hier direkt anmelden.

Nachrichten zum Thema

10.02.17
Hohenheim/Heidelberg – Sie teilen sich einen Körper und sind doch oft das genaue Gegenteil voneinander – zumindest im Inneren. Bisher ungelöst war die Frage, warum bei jedem zweiten rechtsseitigen......
06.02.17
Denver – Eine autologe Stammzelltherapie könnte die effektivste Behandlung der Multiplen Sklerose sein. In einer Phase-2-Studie waren fast alle Patienten mit der schubförmig remittierenden Variante......
27.01.17
Forscher bilden chimäre Embryonen mit menschlichen Anteilen
Palo Alto/La Jolla - Zwei Forschergruppen sind dem Ziel, menschliche Organe in Tieren zu züchten, um sie zu wissenschaftlichen Zwecken oder zur Transplantation zu verwenden, einen Schritt näher......
20.01.17
Boston – Die klonale Hämatopoese, eine im Alter häufig auftretende prämaligne Veränderung des Knochenmarks, könnte ein wichtiger Auslöser der Atherosklerose sein, an der viele Menschen im Alter......
20.01.17
Berlin – Der Gemeinsame Bundesausschuss (G-BA) hat die Bewertungsverfahren zu drei Varianten der Stammzelltransplantation bei multiplem Myelom unterbrochen und die Entscheidung über den möglichen......
12.01.17
Diabetes: Wie Knochenbrüche besser heilen könnten
Palo Alto – Diabetespatienten, deren Knochen nach einem Bruch schlecht heilen, könnten Ärzte mit einem lokal applizierten Hydrogel helfen. Zumindest bei Mäusen mit Diabetes gelang es Forschern vom......
11.01.17
Blinde Mäuse reagieren wieder auf Licht mittels Retina-Transplantat
Kobe – Blinde Mäuse sollen dank eines Retina-Transplantats wieder Licht wahrnehmen können. Den Gewebeersatz haben die Forscher vom RIKEN Center for Developmental Biology in Japan aus induzierten......
VG Wort

Fachgebiet

Anzeige

Themen suchen

A
Ä
B
C
D
E
F
G
H
I
K
L
M
N
O
Ö
P
Q
R
S
T
U
Ü
V
W
Y
Z
Suchen

Weitere...

Login

Loggen Sie sich auf Mein DÄ ein

E-Mail

Passwort

newsletter.aerzteblatt.de

Newsletter

Informieren Sie sich täglich (montags bis freitags) per E-Mail über das aktuelle Geschehen aus der Gesundheitspolitik und der Medizin. Bestellen Sie den kostenfreien Newsletter des Deutschen Ärzteblattes

Immer auf dem Laufenden sein, ohne Informationen hinterher zu rennen: Der tagesaktuelle Newsletter

Aktuelle Kommentare

Archiv

RSS

RSS

Die aktuellsten Meldungen als RSS-Feed. Mit einer geeigneten Software können Sie den Feed abonnieren.

Anzeige