NewsMedizin„Bei der Verarbeitung deutscher klinischer Daten steht die Forschung im Vergleich zum englischen Sprachraum noch am Anfang“
Als E-Mail versenden...
Auf facebook teilen...
Twittern...
Drucken...

Medizin

„Bei der Verarbeitung deutscher klinischer Daten steht die Forschung im Vergleich zum englischen Sprachraum noch am Anfang“

Donnerstag, 19. April 2018

Berlin – In einem gemeinsamen Projekt mit dem Deutschen Forschungszentrum für Künstliche Intelligenz (DFKI) werden an der Charité – Universitätsmedizin Berlin Arztbriefe ausgelesen und automatisiert annotiert. Die ersten Ergebnisse des Projekts zeigen, dass die künstliche Intelligenz (KI) noch stark für den deutschen Kontext angepasst werden muss. Deshalb soll eine Art Thesaurus entwickelt werden, der deutsche Arztbriefe besser versteht. Die Entwicklung findet im Rahmen des vom Bundeswirtschaftsministerium (BMWi) geförderten Projekts Medical Allround-Care Service Solutions (MACSS) statt.

Fünf Fragen an Klemens Budde, Projektleiter MACCS, Leitender Oberarzt der Medizinischen Klinik mit Schwerpunkt Nephrologie und Internistische Intensivmedizin an der Charité – Universitätsmedizin Berlin und Leiter der Arbeitsgruppe „Gesundheit, Medizintechnik, Pflege“ der Plattform Lernende Systeme.

DÄ: Seit wann arbeiten Sie mit klinischer Daten­intelli­genz, um Arztbriefe auszulesen und zu analysieren?
Klemens Budde: Im Rahmen des vom BMWi geförderten MACSS-Projektes arbeiten wir in der Charité seit 2016 mit dem Sprachtechnologie-Forscher Roland Roller vom DFKI an der automatischen Analyse von Arztbriefen und Verlaufsnotizen. Bei der Verarbeitung deutscher klinischer Daten steht die Forschung im Vergleich zum englischen Sprachraum noch am Anfang. Erschwerend zeichnet sich die deutsche Sprache durch eine komplexe Syntax und Wortstruktur aus. In Deutschland müssen bei der Datenanalyse außerdem hohe datenschutzrechtliche Anforderungen eingehalten werden. Die Arztbriefe müssen daher meist zeitaufwendig manuell anonymisiert und dann mit relevanten Informationen angereichert werden.

In unserem Fall hat die Annotierung von 120 Arztbriefen und 1.600 Verlaufsnotizen etwa ein Jahr in Anspruch genommen.  Diese Daten sind die Grundlage für unsere maschinellen Lernverfahren. Somit dauerte es etwas länger, bis das eigentliche Training der Methoden beginnen konnte. Einmal trainiert, kann das System in kürzester Zeit relevante medizinische Informationen aus Tausenden Arztbriefen verarbeiten.

DÄ: Was leistet MACCS, um Ärzte zu unterstützen?
Budde: Unsere Textanalyse-Methoden liefern Informationen über Symptome, Körperteile, Medikationen oder Maßeinheiten, und wie diese in Zusammenhang stehen. „Wo tritt ein Symptom auf?“ oder „Wie hat sich eine Medikation geändert?“ sind Fragen, die unsere Anwendung heute bereits beantwortet. In Zukunft wollen wir Patientendaten wie Laborwerte, Diagnosen oder Prozeduren auf Warnsignale durchsuchen, um Komplikationen wie ungewollte Rehospitalisierungen zu vermeiden.

Auch entscheidungsunterstützende Systeme sind in Zukunft gut vorstellbar. Zur Hilfe bei Diagnosen können die Daten des Patienten zum Beispiel mit denen eines Patienten mit ähnlichen Symptomen verglichen werden.  Die Wissensextraktion aus verschiede­nen Therapierichtlinien oder wissenschaftlichen Publikationen unterstützt zum Beispiel bei Therapieentscheidungen.

DÄ: Welche Probleme sind dabei aufgetreten?
Budde: Zum jetzigen Zeitpunkt bestand das Hauptproblem darin, einen ausreichend großen Datensatz zum Training unserer Methoden zu erstellen. Das DFKI baut in Zusammenarbeit mit der Charité zurzeit ein kleines Testsystem auf, mit dem die Mediziner die Effizienz der Methoden testen können. Stolpersteine in Arztbriefen sind zum Beispiel die zahlreichen Negierungen, wie „zum Ausschluss von“, Vermutungen wie „Verdacht auf“ und eine Reihe von nicht eindeutigen abteilungsspezifischen Abkürzungen. „HWI“ steht etwa für Hinterwandinfarkt oder Harnwegsinfekt. Erste Ergebnisse zeigen, dass die Detektion von Negierungen oder Vermutungen schon gut funktioniert, auch die verschiedenen Zuordnungen zu Diagnose, Therapie, Medikation et cetera sind bereits weit fortgeschritten.

DÄ: Wie gut wird diese Form der klinischen Datenintelligenz im Kollegium und von Patienten akzeptiert?
Budde: Das System ist noch im Aufbau und konnte daher noch nicht in einem breiten Kollegium getestet werden. An unserem Projekt ist aber der Patientenverband der Nierenpatienten als assoziierter Partner beteiligt. In der Zusammenarbeit konnten wir beobachten, dass interessanterweise Patienten den Verfahren der Datenintelligenz sehr aufgeschlossen gegenüber stehen. Gerade chronisch kranke Menschen sehen eher den Nutzen derartiger Forschungsansätze und sorgen sich weniger um Risiken. Die Patienten wollen gemeinsam mit den Ärzten die Diagnostik und Therapie ihrer chronischen Krankheit verbessern und sehen dies als absolute Priorität. Dabei unterstützen uns die Patienten zum Beispiel in der Forderung, den Datenschutz im Forschungskontext differenzierter zu betrachten und klare Regeln für die automatische Anonymisierung von Patientendaten zu definieren.

DÄ: Werden auch an anderen Kliniken bereits vergleichbare Systeme entwickelt und angewandt? Welche Relevanz werden KI-Systeme wie diese in Zukunft haben?
Budde: KI-Systeme werden in den kommenden Jahren verstärkt Einzug in die Kliniken und Arztpraxen halten. Den Anfang machen vermutlich Anwendungen, die große Datenmengen leichter auswerten und Muster erkennen können. Derartige Systeme unterstützen Ärzte bei ihrer Entscheidungsfindung in Diagnostik und Therapie. Aufgrund ihrer Erfahrung und den Patientenpräferenzen werden natürlich die Ärzte schlussendlich den besten Weg vorschlagen. Allerdings bin ich überzeugt, dass die Bereitstellung von Wissen Ärzten zu besseren Entscheidungen verhilft und ihnen mehr Zeit lässt, diese mit dem Patienten zu besprechen. Das Ziel muss ganz klar eine Verbesserung der Patientenversorgung sein.

Der Einsatz von künstlicher Intelligenz im Gesundheitsbereich wirft aber auch viele ethische, juristische und gesellschaftlichen Fragen auf. Bei der Plattform Lernende Systeme tauschen wir uns mit Beteiligten aus allen Branchen zu Transparenz, Haftungsfragen, Akzeptanz und gesellschaftlichen Konsequenzen aus. Wir wollen Politik und Gesellschaft aufzeigen, wo Handlungsbedarf besteht, um einen verantwortungsvollen Einsatz von KI im Gesundheitsbereich zu ermöglichen. © gie/aerzteblatt.de

Leserkommentare

E-Mail
Passwort

Registrieren

Um Artikel, Nachrichten oder Blogs kommentieren zu können, müssen Sie registriert sein. Sind sie bereits für den Newsletter oder den Stellenmarkt registriert, können Sie sich hier direkt anmelden.

LNS

Nachrichten zum Thema

18. Februar 2019
Berlin – Die Kassenärztliche Bundesvereinigung (KBV) empfiehlt niedergelassenen Ärzten, sich mit anderen Medizinern im Rahmen eines sogenannten Peer-Reviews auszutauschen. Dieser kollegiale
Peer-Review als zusätzliches Instrument der Qualitätssicherung
12. Februar 2019
Guangzhou – Sind Computer Ärzten demnächst in einer ihrer Kernkompetenzen, der Diagnose von Erkrankungen, überlegen? Chinesische Forscher stellen in Nature Medicine (2019; doi:
Künstliche Intelligenz diagnostiziert genauer als (unerfahrene) Kinderärzte
12. Februar 2019
Philadelphia/Boston – Seit 2017 verwendet Facebook einen Algorithmus, um Suizide zu verhindern. Im November 2018 verkündete Mark Zuckerberg, der Algorithmus hätte weltweit bereits zu 3.500 Einsätzen
Suizid-Präventionsprogramm: Facebook soll ethische Grundsätze beachten
7. Februar 2019
Berlin – Künstliche Intelligenz (KI) erleichtert es, Gesundheitsrisiken bei erwachsenen Patienten mit angeborenen Herzfehlern früher zu erkennen und zu behandeln. Dieses Fazit zieht das Kompetenznetz
Künstliche Intelligenz soll Versorgung von Erwachsenen mit angeborenen Herzfehlern verbessern
6. Februar 2019
Gütersloh – Eine große Mehrheit der Menschen in der Europäischen Union (EU) wünscht einer Umfrage zufolge mehr Klarheit und Kontrolle beim Einsatz von Algorithmen. Laut einer heute von der
Mehrheit der EU-Bürger wünscht mehr Kontrolle beim Einsatz von Algorithmen
31. Januar 2019
Berlin – Patienten, die ihren Gelenkzustand, ihre Zufriedenheit und etwaige Komplikationen nach einer arthroskopisch durchgeführten Gelenk-OP an Knie, Hüfte oder Schulter im Deutschsprachigen
Patientenbeteiligung am Arthroskopieregister verbessert Versorgung
24. Januar 2019
Coventry/England – Eine Software, die mithilfe künstlicher Intelligenz im Röntgenthorax nach Auffälligkeiten sucht, könnte Radiologen in Zukunft bei einer zeitraubenden Routineaufgabe entlasten. In
VG WortLNS LNS

Fachgebiet

Anzeige

Aktuelle Kommentare

Archiv

Anzeige
NEWSLETTER